This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Leibniz formula for _pi . This proof depends on three main facts: (1) the series F is convergent, because it is an alternating series ( iseralt ). (2) Using leibpilem2 to rewrite the series as a power series, it is the x = 1 special case of the Taylor series for arctan ( atantayl2 ). (3) Although we cannot directly plug x = 1 into atantayl2 , Abel's theorem ( abelth2 ) says that the limit along any sequence converging to 1 , such as 1 - 1 / n , of the power series converges to the power series extended to 1 , and then since arctan is continuous at 1 ( atancn ) we get the desired result. This is Metamath 100 proof #26. (Contributed by Mario Carneiro, 7-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | leibpi.1 | |- F = ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) |
|
| Assertion | leibpi | |- seq 0 ( + , F ) ~~> ( _pi / 4 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leibpi.1 | |- F = ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) |
|
| 2 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 3 | 0zd | |- ( T. -> 0 e. ZZ ) |
|
| 4 | eqidd | |- ( ( T. /\ j e. NN0 ) -> ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) = ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) ) |
|
| 5 | 0cnd | |- ( ( k e. NN0 /\ ( k = 0 \/ 2 || k ) ) -> 0 e. CC ) |
|
| 6 | ioran | |- ( -. ( k = 0 \/ 2 || k ) <-> ( -. k = 0 /\ -. 2 || k ) ) |
|
| 7 | neg1rr | |- -u 1 e. RR |
|
| 8 | leibpilem1 | |- ( ( k e. NN0 /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( k e. NN /\ ( ( k - 1 ) / 2 ) e. NN0 ) ) |
|
| 9 | 8 | simprd | |- ( ( k e. NN0 /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( ( k - 1 ) / 2 ) e. NN0 ) |
| 10 | reexpcl | |- ( ( -u 1 e. RR /\ ( ( k - 1 ) / 2 ) e. NN0 ) -> ( -u 1 ^ ( ( k - 1 ) / 2 ) ) e. RR ) |
|
| 11 | 7 9 10 | sylancr | |- ( ( k e. NN0 /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( -u 1 ^ ( ( k - 1 ) / 2 ) ) e. RR ) |
| 12 | 8 | simpld | |- ( ( k e. NN0 /\ ( -. k = 0 /\ -. 2 || k ) ) -> k e. NN ) |
| 13 | 11 12 | nndivred | |- ( ( k e. NN0 /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) e. RR ) |
| 14 | 13 | recnd | |- ( ( k e. NN0 /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) e. CC ) |
| 15 | 6 14 | sylan2b | |- ( ( k e. NN0 /\ -. ( k = 0 \/ 2 || k ) ) -> ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) e. CC ) |
| 16 | 5 15 | ifclda | |- ( k e. NN0 -> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) e. CC ) |
| 17 | 16 | adantl | |- ( ( T. /\ k e. NN0 ) -> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) e. CC ) |
| 18 | 17 | fmpttd | |- ( T. -> ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) : NN0 --> CC ) |
| 19 | 18 | ffvelcdmda | |- ( ( T. /\ j e. NN0 ) -> ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) e. CC ) |
| 20 | 2nn0 | |- 2 e. NN0 |
|
| 21 | 20 | a1i | |- ( T. -> 2 e. NN0 ) |
| 22 | nn0mulcl | |- ( ( 2 e. NN0 /\ n e. NN0 ) -> ( 2 x. n ) e. NN0 ) |
|
| 23 | 21 22 | sylan | |- ( ( T. /\ n e. NN0 ) -> ( 2 x. n ) e. NN0 ) |
| 24 | nn0p1nn | |- ( ( 2 x. n ) e. NN0 -> ( ( 2 x. n ) + 1 ) e. NN ) |
|
| 25 | 23 24 | syl | |- ( ( T. /\ n e. NN0 ) -> ( ( 2 x. n ) + 1 ) e. NN ) |
| 26 | 25 | nnrecred | |- ( ( T. /\ n e. NN0 ) -> ( 1 / ( ( 2 x. n ) + 1 ) ) e. RR ) |
| 27 | 26 | fmpttd | |- ( T. -> ( n e. NN0 |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) : NN0 --> RR ) |
| 28 | nn0mulcl | |- ( ( 2 e. NN0 /\ k e. NN0 ) -> ( 2 x. k ) e. NN0 ) |
|
| 29 | 21 28 | sylan | |- ( ( T. /\ k e. NN0 ) -> ( 2 x. k ) e. NN0 ) |
| 30 | 29 | nn0red | |- ( ( T. /\ k e. NN0 ) -> ( 2 x. k ) e. RR ) |
| 31 | peano2nn0 | |- ( k e. NN0 -> ( k + 1 ) e. NN0 ) |
|
| 32 | 31 | adantl | |- ( ( T. /\ k e. NN0 ) -> ( k + 1 ) e. NN0 ) |
| 33 | nn0mulcl | |- ( ( 2 e. NN0 /\ ( k + 1 ) e. NN0 ) -> ( 2 x. ( k + 1 ) ) e. NN0 ) |
|
| 34 | 20 32 33 | sylancr | |- ( ( T. /\ k e. NN0 ) -> ( 2 x. ( k + 1 ) ) e. NN0 ) |
| 35 | 34 | nn0red | |- ( ( T. /\ k e. NN0 ) -> ( 2 x. ( k + 1 ) ) e. RR ) |
| 36 | 1red | |- ( ( T. /\ k e. NN0 ) -> 1 e. RR ) |
|
| 37 | nn0re | |- ( k e. NN0 -> k e. RR ) |
|
| 38 | 37 | adantl | |- ( ( T. /\ k e. NN0 ) -> k e. RR ) |
| 39 | 38 | lep1d | |- ( ( T. /\ k e. NN0 ) -> k <_ ( k + 1 ) ) |
| 40 | peano2re | |- ( k e. RR -> ( k + 1 ) e. RR ) |
|
| 41 | 38 40 | syl | |- ( ( T. /\ k e. NN0 ) -> ( k + 1 ) e. RR ) |
| 42 | 2re | |- 2 e. RR |
|
| 43 | 42 | a1i | |- ( ( T. /\ k e. NN0 ) -> 2 e. RR ) |
| 44 | 2pos | |- 0 < 2 |
|
| 45 | 44 | a1i | |- ( ( T. /\ k e. NN0 ) -> 0 < 2 ) |
| 46 | lemul2 | |- ( ( k e. RR /\ ( k + 1 ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( k <_ ( k + 1 ) <-> ( 2 x. k ) <_ ( 2 x. ( k + 1 ) ) ) ) |
|
| 47 | 38 41 43 45 46 | syl112anc | |- ( ( T. /\ k e. NN0 ) -> ( k <_ ( k + 1 ) <-> ( 2 x. k ) <_ ( 2 x. ( k + 1 ) ) ) ) |
| 48 | 39 47 | mpbid | |- ( ( T. /\ k e. NN0 ) -> ( 2 x. k ) <_ ( 2 x. ( k + 1 ) ) ) |
| 49 | 30 35 36 48 | leadd1dd | |- ( ( T. /\ k e. NN0 ) -> ( ( 2 x. k ) + 1 ) <_ ( ( 2 x. ( k + 1 ) ) + 1 ) ) |
| 50 | nn0p1nn | |- ( ( 2 x. k ) e. NN0 -> ( ( 2 x. k ) + 1 ) e. NN ) |
|
| 51 | 29 50 | syl | |- ( ( T. /\ k e. NN0 ) -> ( ( 2 x. k ) + 1 ) e. NN ) |
| 52 | 51 | nnred | |- ( ( T. /\ k e. NN0 ) -> ( ( 2 x. k ) + 1 ) e. RR ) |
| 53 | 51 | nngt0d | |- ( ( T. /\ k e. NN0 ) -> 0 < ( ( 2 x. k ) + 1 ) ) |
| 54 | nn0p1nn | |- ( ( 2 x. ( k + 1 ) ) e. NN0 -> ( ( 2 x. ( k + 1 ) ) + 1 ) e. NN ) |
|
| 55 | 34 54 | syl | |- ( ( T. /\ k e. NN0 ) -> ( ( 2 x. ( k + 1 ) ) + 1 ) e. NN ) |
| 56 | 55 | nnred | |- ( ( T. /\ k e. NN0 ) -> ( ( 2 x. ( k + 1 ) ) + 1 ) e. RR ) |
| 57 | 55 | nngt0d | |- ( ( T. /\ k e. NN0 ) -> 0 < ( ( 2 x. ( k + 1 ) ) + 1 ) ) |
| 58 | lerec | |- ( ( ( ( ( 2 x. k ) + 1 ) e. RR /\ 0 < ( ( 2 x. k ) + 1 ) ) /\ ( ( ( 2 x. ( k + 1 ) ) + 1 ) e. RR /\ 0 < ( ( 2 x. ( k + 1 ) ) + 1 ) ) ) -> ( ( ( 2 x. k ) + 1 ) <_ ( ( 2 x. ( k + 1 ) ) + 1 ) <-> ( 1 / ( ( 2 x. ( k + 1 ) ) + 1 ) ) <_ ( 1 / ( ( 2 x. k ) + 1 ) ) ) ) |
|
| 59 | 52 53 56 57 58 | syl22anc | |- ( ( T. /\ k e. NN0 ) -> ( ( ( 2 x. k ) + 1 ) <_ ( ( 2 x. ( k + 1 ) ) + 1 ) <-> ( 1 / ( ( 2 x. ( k + 1 ) ) + 1 ) ) <_ ( 1 / ( ( 2 x. k ) + 1 ) ) ) ) |
| 60 | 49 59 | mpbid | |- ( ( T. /\ k e. NN0 ) -> ( 1 / ( ( 2 x. ( k + 1 ) ) + 1 ) ) <_ ( 1 / ( ( 2 x. k ) + 1 ) ) ) |
| 61 | oveq2 | |- ( n = ( k + 1 ) -> ( 2 x. n ) = ( 2 x. ( k + 1 ) ) ) |
|
| 62 | 61 | oveq1d | |- ( n = ( k + 1 ) -> ( ( 2 x. n ) + 1 ) = ( ( 2 x. ( k + 1 ) ) + 1 ) ) |
| 63 | 62 | oveq2d | |- ( n = ( k + 1 ) -> ( 1 / ( ( 2 x. n ) + 1 ) ) = ( 1 / ( ( 2 x. ( k + 1 ) ) + 1 ) ) ) |
| 64 | eqid | |- ( n e. NN0 |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) = ( n e. NN0 |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) |
|
| 65 | ovex | |- ( 1 / ( ( 2 x. ( k + 1 ) ) + 1 ) ) e. _V |
|
| 66 | 63 64 65 | fvmpt | |- ( ( k + 1 ) e. NN0 -> ( ( n e. NN0 |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) ` ( k + 1 ) ) = ( 1 / ( ( 2 x. ( k + 1 ) ) + 1 ) ) ) |
| 67 | 32 66 | syl | |- ( ( T. /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) ` ( k + 1 ) ) = ( 1 / ( ( 2 x. ( k + 1 ) ) + 1 ) ) ) |
| 68 | oveq2 | |- ( n = k -> ( 2 x. n ) = ( 2 x. k ) ) |
|
| 69 | 68 | oveq1d | |- ( n = k -> ( ( 2 x. n ) + 1 ) = ( ( 2 x. k ) + 1 ) ) |
| 70 | 69 | oveq2d | |- ( n = k -> ( 1 / ( ( 2 x. n ) + 1 ) ) = ( 1 / ( ( 2 x. k ) + 1 ) ) ) |
| 71 | ovex | |- ( 1 / ( ( 2 x. k ) + 1 ) ) e. _V |
|
| 72 | 70 64 71 | fvmpt | |- ( k e. NN0 -> ( ( n e. NN0 |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) ` k ) = ( 1 / ( ( 2 x. k ) + 1 ) ) ) |
| 73 | 72 | adantl | |- ( ( T. /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) ` k ) = ( 1 / ( ( 2 x. k ) + 1 ) ) ) |
| 74 | 60 67 73 | 3brtr4d | |- ( ( T. /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) ` ( k + 1 ) ) <_ ( ( n e. NN0 |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) ` k ) ) |
| 75 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 76 | 1zzd | |- ( T. -> 1 e. ZZ ) |
|
| 77 | ax-1cn | |- 1 e. CC |
|
| 78 | divcnv | |- ( 1 e. CC -> ( n e. NN |-> ( 1 / n ) ) ~~> 0 ) |
|
| 79 | 77 78 | mp1i | |- ( T. -> ( n e. NN |-> ( 1 / n ) ) ~~> 0 ) |
| 80 | nn0ex | |- NN0 e. _V |
|
| 81 | 80 | mptex | |- ( n e. NN0 |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) e. _V |
| 82 | 81 | a1i | |- ( T. -> ( n e. NN0 |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) e. _V ) |
| 83 | oveq2 | |- ( n = k -> ( 1 / n ) = ( 1 / k ) ) |
|
| 84 | eqid | |- ( n e. NN |-> ( 1 / n ) ) = ( n e. NN |-> ( 1 / n ) ) |
|
| 85 | ovex | |- ( 1 / k ) e. _V |
|
| 86 | 83 84 85 | fvmpt | |- ( k e. NN -> ( ( n e. NN |-> ( 1 / n ) ) ` k ) = ( 1 / k ) ) |
| 87 | 86 | adantl | |- ( ( T. /\ k e. NN ) -> ( ( n e. NN |-> ( 1 / n ) ) ` k ) = ( 1 / k ) ) |
| 88 | nnrecre | |- ( k e. NN -> ( 1 / k ) e. RR ) |
|
| 89 | 88 | adantl | |- ( ( T. /\ k e. NN ) -> ( 1 / k ) e. RR ) |
| 90 | 87 89 | eqeltrd | |- ( ( T. /\ k e. NN ) -> ( ( n e. NN |-> ( 1 / n ) ) ` k ) e. RR ) |
| 91 | nnnn0 | |- ( k e. NN -> k e. NN0 ) |
|
| 92 | 91 | adantl | |- ( ( T. /\ k e. NN ) -> k e. NN0 ) |
| 93 | 92 72 | syl | |- ( ( T. /\ k e. NN ) -> ( ( n e. NN0 |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) ` k ) = ( 1 / ( ( 2 x. k ) + 1 ) ) ) |
| 94 | 91 51 | sylan2 | |- ( ( T. /\ k e. NN ) -> ( ( 2 x. k ) + 1 ) e. NN ) |
| 95 | 94 | nnrecred | |- ( ( T. /\ k e. NN ) -> ( 1 / ( ( 2 x. k ) + 1 ) ) e. RR ) |
| 96 | 93 95 | eqeltrd | |- ( ( T. /\ k e. NN ) -> ( ( n e. NN0 |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) ` k ) e. RR ) |
| 97 | nnre | |- ( k e. NN -> k e. RR ) |
|
| 98 | 97 | adantl | |- ( ( T. /\ k e. NN ) -> k e. RR ) |
| 99 | 20 92 28 | sylancr | |- ( ( T. /\ k e. NN ) -> ( 2 x. k ) e. NN0 ) |
| 100 | 99 | nn0red | |- ( ( T. /\ k e. NN ) -> ( 2 x. k ) e. RR ) |
| 101 | peano2re | |- ( ( 2 x. k ) e. RR -> ( ( 2 x. k ) + 1 ) e. RR ) |
|
| 102 | 100 101 | syl | |- ( ( T. /\ k e. NN ) -> ( ( 2 x. k ) + 1 ) e. RR ) |
| 103 | nn0addge1 | |- ( ( k e. RR /\ k e. NN0 ) -> k <_ ( k + k ) ) |
|
| 104 | 98 92 103 | syl2anc | |- ( ( T. /\ k e. NN ) -> k <_ ( k + k ) ) |
| 105 | 98 | recnd | |- ( ( T. /\ k e. NN ) -> k e. CC ) |
| 106 | 105 | 2timesd | |- ( ( T. /\ k e. NN ) -> ( 2 x. k ) = ( k + k ) ) |
| 107 | 104 106 | breqtrrd | |- ( ( T. /\ k e. NN ) -> k <_ ( 2 x. k ) ) |
| 108 | 100 | lep1d | |- ( ( T. /\ k e. NN ) -> ( 2 x. k ) <_ ( ( 2 x. k ) + 1 ) ) |
| 109 | 98 100 102 107 108 | letrd | |- ( ( T. /\ k e. NN ) -> k <_ ( ( 2 x. k ) + 1 ) ) |
| 110 | nngt0 | |- ( k e. NN -> 0 < k ) |
|
| 111 | 110 | adantl | |- ( ( T. /\ k e. NN ) -> 0 < k ) |
| 112 | 94 | nnred | |- ( ( T. /\ k e. NN ) -> ( ( 2 x. k ) + 1 ) e. RR ) |
| 113 | 94 | nngt0d | |- ( ( T. /\ k e. NN ) -> 0 < ( ( 2 x. k ) + 1 ) ) |
| 114 | lerec | |- ( ( ( k e. RR /\ 0 < k ) /\ ( ( ( 2 x. k ) + 1 ) e. RR /\ 0 < ( ( 2 x. k ) + 1 ) ) ) -> ( k <_ ( ( 2 x. k ) + 1 ) <-> ( 1 / ( ( 2 x. k ) + 1 ) ) <_ ( 1 / k ) ) ) |
|
| 115 | 98 111 112 113 114 | syl22anc | |- ( ( T. /\ k e. NN ) -> ( k <_ ( ( 2 x. k ) + 1 ) <-> ( 1 / ( ( 2 x. k ) + 1 ) ) <_ ( 1 / k ) ) ) |
| 116 | 109 115 | mpbid | |- ( ( T. /\ k e. NN ) -> ( 1 / ( ( 2 x. k ) + 1 ) ) <_ ( 1 / k ) ) |
| 117 | 116 93 87 | 3brtr4d | |- ( ( T. /\ k e. NN ) -> ( ( n e. NN0 |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) ` k ) <_ ( ( n e. NN |-> ( 1 / n ) ) ` k ) ) |
| 118 | 94 | nnrpd | |- ( ( T. /\ k e. NN ) -> ( ( 2 x. k ) + 1 ) e. RR+ ) |
| 119 | 118 | rpreccld | |- ( ( T. /\ k e. NN ) -> ( 1 / ( ( 2 x. k ) + 1 ) ) e. RR+ ) |
| 120 | 119 | rpge0d | |- ( ( T. /\ k e. NN ) -> 0 <_ ( 1 / ( ( 2 x. k ) + 1 ) ) ) |
| 121 | 120 93 | breqtrrd | |- ( ( T. /\ k e. NN ) -> 0 <_ ( ( n e. NN0 |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) ` k ) ) |
| 122 | 75 76 79 82 90 96 117 121 | climsqz2 | |- ( T. -> ( n e. NN0 |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) ~~> 0 ) |
| 123 | neg1cn | |- -u 1 e. CC |
|
| 124 | 123 | a1i | |- ( T. -> -u 1 e. CC ) |
| 125 | expcl | |- ( ( -u 1 e. CC /\ k e. NN0 ) -> ( -u 1 ^ k ) e. CC ) |
|
| 126 | 124 125 | sylan | |- ( ( T. /\ k e. NN0 ) -> ( -u 1 ^ k ) e. CC ) |
| 127 | 51 | nncnd | |- ( ( T. /\ k e. NN0 ) -> ( ( 2 x. k ) + 1 ) e. CC ) |
| 128 | 51 | nnne0d | |- ( ( T. /\ k e. NN0 ) -> ( ( 2 x. k ) + 1 ) =/= 0 ) |
| 129 | 126 127 128 | divrecd | |- ( ( T. /\ k e. NN0 ) -> ( ( -u 1 ^ k ) / ( ( 2 x. k ) + 1 ) ) = ( ( -u 1 ^ k ) x. ( 1 / ( ( 2 x. k ) + 1 ) ) ) ) |
| 130 | oveq2 | |- ( n = k -> ( -u 1 ^ n ) = ( -u 1 ^ k ) ) |
|
| 131 | 130 69 | oveq12d | |- ( n = k -> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) = ( ( -u 1 ^ k ) / ( ( 2 x. k ) + 1 ) ) ) |
| 132 | eqid | |- ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) = ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) |
|
| 133 | ovex | |- ( ( -u 1 ^ k ) / ( ( 2 x. k ) + 1 ) ) e. _V |
|
| 134 | 131 132 133 | fvmpt | |- ( k e. NN0 -> ( ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) ` k ) = ( ( -u 1 ^ k ) / ( ( 2 x. k ) + 1 ) ) ) |
| 135 | 134 | adantl | |- ( ( T. /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) ` k ) = ( ( -u 1 ^ k ) / ( ( 2 x. k ) + 1 ) ) ) |
| 136 | 73 | oveq2d | |- ( ( T. /\ k e. NN0 ) -> ( ( -u 1 ^ k ) x. ( ( n e. NN0 |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) ` k ) ) = ( ( -u 1 ^ k ) x. ( 1 / ( ( 2 x. k ) + 1 ) ) ) ) |
| 137 | 129 135 136 | 3eqtr4d | |- ( ( T. /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) ` k ) = ( ( -u 1 ^ k ) x. ( ( n e. NN0 |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) ` k ) ) ) |
| 138 | 2 3 27 74 122 137 | iseralt | |- ( T. -> seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) ) e. dom ~~> ) |
| 139 | climdm | |- ( seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) ) e. dom ~~> <-> seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) ) ~~> ( ~~> ` seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) ) ) ) |
|
| 140 | 138 139 | sylib | |- ( T. -> seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) ) ~~> ( ~~> ` seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) ) ) ) |
| 141 | eqid | |- ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) = ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) |
|
| 142 | fvex | |- ( ~~> ` seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) ) ) e. _V |
|
| 143 | 132 141 142 | leibpilem2 | |- ( seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) ) ~~> ( ~~> ` seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) ) ) <-> seq 0 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ) ~~> ( ~~> ` seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) ) ) ) |
| 144 | 140 143 | sylib | |- ( T. -> seq 0 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ) ~~> ( ~~> ` seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) ) ) ) |
| 145 | seqex | |- seq 0 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ) e. _V |
|
| 146 | 145 142 | breldm | |- ( seq 0 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ) ~~> ( ~~> ` seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) ) ) -> seq 0 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ) e. dom ~~> ) |
| 147 | 144 146 | syl | |- ( T. -> seq 0 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ) e. dom ~~> ) |
| 148 | 2 3 4 19 147 | isumclim2 | |- ( T. -> seq 0 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ) ~~> sum_ j e. NN0 ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) ) |
| 149 | eqid | |- ( x e. ( 0 [,] 1 ) |-> sum_ j e. NN0 ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( x ^ j ) ) ) = ( x e. ( 0 [,] 1 ) |-> sum_ j e. NN0 ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( x ^ j ) ) ) |
|
| 150 | 18 147 149 | abelth2 | |- ( T. -> ( x e. ( 0 [,] 1 ) |-> sum_ j e. NN0 ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( x ^ j ) ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 151 | nnrp | |- ( n e. NN -> n e. RR+ ) |
|
| 152 | 151 | adantl | |- ( ( T. /\ n e. NN ) -> n e. RR+ ) |
| 153 | 152 | rpreccld | |- ( ( T. /\ n e. NN ) -> ( 1 / n ) e. RR+ ) |
| 154 | 153 | rpred | |- ( ( T. /\ n e. NN ) -> ( 1 / n ) e. RR ) |
| 155 | 153 | rpge0d | |- ( ( T. /\ n e. NN ) -> 0 <_ ( 1 / n ) ) |
| 156 | nnge1 | |- ( n e. NN -> 1 <_ n ) |
|
| 157 | 156 | adantl | |- ( ( T. /\ n e. NN ) -> 1 <_ n ) |
| 158 | nnre | |- ( n e. NN -> n e. RR ) |
|
| 159 | 158 | adantl | |- ( ( T. /\ n e. NN ) -> n e. RR ) |
| 160 | 159 | recnd | |- ( ( T. /\ n e. NN ) -> n e. CC ) |
| 161 | 160 | mulridd | |- ( ( T. /\ n e. NN ) -> ( n x. 1 ) = n ) |
| 162 | 157 161 | breqtrrd | |- ( ( T. /\ n e. NN ) -> 1 <_ ( n x. 1 ) ) |
| 163 | 1red | |- ( ( T. /\ n e. NN ) -> 1 e. RR ) |
|
| 164 | nngt0 | |- ( n e. NN -> 0 < n ) |
|
| 165 | 164 | adantl | |- ( ( T. /\ n e. NN ) -> 0 < n ) |
| 166 | ledivmul | |- ( ( 1 e. RR /\ 1 e. RR /\ ( n e. RR /\ 0 < n ) ) -> ( ( 1 / n ) <_ 1 <-> 1 <_ ( n x. 1 ) ) ) |
|
| 167 | 163 163 159 165 166 | syl112anc | |- ( ( T. /\ n e. NN ) -> ( ( 1 / n ) <_ 1 <-> 1 <_ ( n x. 1 ) ) ) |
| 168 | 162 167 | mpbird | |- ( ( T. /\ n e. NN ) -> ( 1 / n ) <_ 1 ) |
| 169 | elicc01 | |- ( ( 1 / n ) e. ( 0 [,] 1 ) <-> ( ( 1 / n ) e. RR /\ 0 <_ ( 1 / n ) /\ ( 1 / n ) <_ 1 ) ) |
|
| 170 | 154 155 168 169 | syl3anbrc | |- ( ( T. /\ n e. NN ) -> ( 1 / n ) e. ( 0 [,] 1 ) ) |
| 171 | iirev | |- ( ( 1 / n ) e. ( 0 [,] 1 ) -> ( 1 - ( 1 / n ) ) e. ( 0 [,] 1 ) ) |
|
| 172 | 170 171 | syl | |- ( ( T. /\ n e. NN ) -> ( 1 - ( 1 / n ) ) e. ( 0 [,] 1 ) ) |
| 173 | 172 | fmpttd | |- ( T. -> ( n e. NN |-> ( 1 - ( 1 / n ) ) ) : NN --> ( 0 [,] 1 ) ) |
| 174 | 1cnd | |- ( T. -> 1 e. CC ) |
|
| 175 | nnex | |- NN e. _V |
|
| 176 | 175 | mptex | |- ( n e. NN |-> ( 1 - ( 1 / n ) ) ) e. _V |
| 177 | 176 | a1i | |- ( T. -> ( n e. NN |-> ( 1 - ( 1 / n ) ) ) e. _V ) |
| 178 | 90 | recnd | |- ( ( T. /\ k e. NN ) -> ( ( n e. NN |-> ( 1 / n ) ) ` k ) e. CC ) |
| 179 | 83 | oveq2d | |- ( n = k -> ( 1 - ( 1 / n ) ) = ( 1 - ( 1 / k ) ) ) |
| 180 | eqid | |- ( n e. NN |-> ( 1 - ( 1 / n ) ) ) = ( n e. NN |-> ( 1 - ( 1 / n ) ) ) |
|
| 181 | ovex | |- ( 1 - ( 1 / k ) ) e. _V |
|
| 182 | 179 180 181 | fvmpt | |- ( k e. NN -> ( ( n e. NN |-> ( 1 - ( 1 / n ) ) ) ` k ) = ( 1 - ( 1 / k ) ) ) |
| 183 | 86 | oveq2d | |- ( k e. NN -> ( 1 - ( ( n e. NN |-> ( 1 / n ) ) ` k ) ) = ( 1 - ( 1 / k ) ) ) |
| 184 | 182 183 | eqtr4d | |- ( k e. NN -> ( ( n e. NN |-> ( 1 - ( 1 / n ) ) ) ` k ) = ( 1 - ( ( n e. NN |-> ( 1 / n ) ) ` k ) ) ) |
| 185 | 184 | adantl | |- ( ( T. /\ k e. NN ) -> ( ( n e. NN |-> ( 1 - ( 1 / n ) ) ) ` k ) = ( 1 - ( ( n e. NN |-> ( 1 / n ) ) ` k ) ) ) |
| 186 | 75 76 79 174 177 178 185 | climsubc2 | |- ( T. -> ( n e. NN |-> ( 1 - ( 1 / n ) ) ) ~~> ( 1 - 0 ) ) |
| 187 | 1m0e1 | |- ( 1 - 0 ) = 1 |
|
| 188 | 186 187 | breqtrdi | |- ( T. -> ( n e. NN |-> ( 1 - ( 1 / n ) ) ) ~~> 1 ) |
| 189 | 1elunit | |- 1 e. ( 0 [,] 1 ) |
|
| 190 | 189 | a1i | |- ( T. -> 1 e. ( 0 [,] 1 ) ) |
| 191 | 75 76 150 173 188 190 | climcncf | |- ( T. -> ( ( x e. ( 0 [,] 1 ) |-> sum_ j e. NN0 ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( x ^ j ) ) ) o. ( n e. NN |-> ( 1 - ( 1 / n ) ) ) ) ~~> ( ( x e. ( 0 [,] 1 ) |-> sum_ j e. NN0 ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( x ^ j ) ) ) ` 1 ) ) |
| 192 | eqidd | |- ( T. -> ( n e. NN |-> ( 1 - ( 1 / n ) ) ) = ( n e. NN |-> ( 1 - ( 1 / n ) ) ) ) |
|
| 193 | eqidd | |- ( T. -> ( x e. ( 0 [,] 1 ) |-> sum_ j e. NN0 ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( x ^ j ) ) ) = ( x e. ( 0 [,] 1 ) |-> sum_ j e. NN0 ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( x ^ j ) ) ) ) |
|
| 194 | oveq1 | |- ( x = ( 1 - ( 1 / n ) ) -> ( x ^ j ) = ( ( 1 - ( 1 / n ) ) ^ j ) ) |
|
| 195 | 194 | oveq2d | |- ( x = ( 1 - ( 1 / n ) ) -> ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( x ^ j ) ) = ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( ( 1 - ( 1 / n ) ) ^ j ) ) ) |
| 196 | 195 | sumeq2sdv | |- ( x = ( 1 - ( 1 / n ) ) -> sum_ j e. NN0 ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( x ^ j ) ) = sum_ j e. NN0 ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( ( 1 - ( 1 / n ) ) ^ j ) ) ) |
| 197 | 172 192 193 196 | fmptco | |- ( T. -> ( ( x e. ( 0 [,] 1 ) |-> sum_ j e. NN0 ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( x ^ j ) ) ) o. ( n e. NN |-> ( 1 - ( 1 / n ) ) ) ) = ( n e. NN |-> sum_ j e. NN0 ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( ( 1 - ( 1 / n ) ) ^ j ) ) ) ) |
| 198 | 0zd | |- ( ( T. /\ n e. NN ) -> 0 e. ZZ ) |
|
| 199 | 9 | adantll | |- ( ( ( T. /\ k e. NN0 ) /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( ( k - 1 ) / 2 ) e. NN0 ) |
| 200 | 7 199 10 | sylancr | |- ( ( ( T. /\ k e. NN0 ) /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( -u 1 ^ ( ( k - 1 ) / 2 ) ) e. RR ) |
| 201 | 200 | recnd | |- ( ( ( T. /\ k e. NN0 ) /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( -u 1 ^ ( ( k - 1 ) / 2 ) ) e. CC ) |
| 202 | 201 | adantllr | |- ( ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( -u 1 ^ ( ( k - 1 ) / 2 ) ) e. CC ) |
| 203 | 1re | |- 1 e. RR |
|
| 204 | resubcl | |- ( ( 1 e. RR /\ ( 1 / n ) e. RR ) -> ( 1 - ( 1 / n ) ) e. RR ) |
|
| 205 | 203 154 204 | sylancr | |- ( ( T. /\ n e. NN ) -> ( 1 - ( 1 / n ) ) e. RR ) |
| 206 | 205 | ad2antrr | |- ( ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( 1 - ( 1 / n ) ) e. RR ) |
| 207 | simplr | |- ( ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) /\ ( -. k = 0 /\ -. 2 || k ) ) -> k e. NN0 ) |
|
| 208 | 206 207 | reexpcld | |- ( ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( ( 1 - ( 1 / n ) ) ^ k ) e. RR ) |
| 209 | 208 | recnd | |- ( ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( ( 1 - ( 1 / n ) ) ^ k ) e. CC ) |
| 210 | nn0cn | |- ( k e. NN0 -> k e. CC ) |
|
| 211 | 210 | ad2antlr | |- ( ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) /\ ( -. k = 0 /\ -. 2 || k ) ) -> k e. CC ) |
| 212 | 12 | adantll | |- ( ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) /\ ( -. k = 0 /\ -. 2 || k ) ) -> k e. NN ) |
| 213 | 212 | nnne0d | |- ( ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) /\ ( -. k = 0 /\ -. 2 || k ) ) -> k =/= 0 ) |
| 214 | 202 209 211 213 | div12d | |- ( ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) = ( ( ( 1 - ( 1 / n ) ) ^ k ) x. ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) |
| 215 | 14 | adantll | |- ( ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) e. CC ) |
| 216 | 209 215 | mulcomd | |- ( ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( ( ( 1 - ( 1 / n ) ) ^ k ) x. ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) = ( ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) x. ( ( 1 - ( 1 / n ) ) ^ k ) ) ) |
| 217 | 214 216 | eqtrd | |- ( ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) = ( ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) x. ( ( 1 - ( 1 / n ) ) ^ k ) ) ) |
| 218 | 6 217 | sylan2b | |- ( ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) /\ -. ( k = 0 \/ 2 || k ) ) -> ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) = ( ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) x. ( ( 1 - ( 1 / n ) ) ^ k ) ) ) |
| 219 | 218 | ifeq2da | |- ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) -> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) = if ( ( k = 0 \/ 2 || k ) , 0 , ( ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) x. ( ( 1 - ( 1 / n ) ) ^ k ) ) ) ) |
| 220 | 205 | recnd | |- ( ( T. /\ n e. NN ) -> ( 1 - ( 1 / n ) ) e. CC ) |
| 221 | expcl | |- ( ( ( 1 - ( 1 / n ) ) e. CC /\ k e. NN0 ) -> ( ( 1 - ( 1 / n ) ) ^ k ) e. CC ) |
|
| 222 | 220 221 | sylan | |- ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) -> ( ( 1 - ( 1 / n ) ) ^ k ) e. CC ) |
| 223 | 222 | mul02d | |- ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) -> ( 0 x. ( ( 1 - ( 1 / n ) ) ^ k ) ) = 0 ) |
| 224 | 223 | ifeq1d | |- ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) -> if ( ( k = 0 \/ 2 || k ) , ( 0 x. ( ( 1 - ( 1 / n ) ) ^ k ) ) , ( ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) x. ( ( 1 - ( 1 / n ) ) ^ k ) ) ) = if ( ( k = 0 \/ 2 || k ) , 0 , ( ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) x. ( ( 1 - ( 1 / n ) ) ^ k ) ) ) ) |
| 225 | 219 224 | eqtr4d | |- ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) -> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) = if ( ( k = 0 \/ 2 || k ) , ( 0 x. ( ( 1 - ( 1 / n ) ) ^ k ) ) , ( ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) x. ( ( 1 - ( 1 / n ) ) ^ k ) ) ) ) |
| 226 | ovif | |- ( if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) x. ( ( 1 - ( 1 / n ) ) ^ k ) ) = if ( ( k = 0 \/ 2 || k ) , ( 0 x. ( ( 1 - ( 1 / n ) ) ^ k ) ) , ( ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) x. ( ( 1 - ( 1 / n ) ) ^ k ) ) ) |
|
| 227 | 225 226 | eqtr4di | |- ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) -> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) = ( if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) x. ( ( 1 - ( 1 / n ) ) ^ k ) ) ) |
| 228 | simpr | |- ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) -> k e. NN0 ) |
|
| 229 | c0ex | |- 0 e. _V |
|
| 230 | ovex | |- ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) e. _V |
|
| 231 | 229 230 | ifex | |- if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) e. _V |
| 232 | eqid | |- ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) = ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) |
|
| 233 | 232 | fvmpt2 | |- ( ( k e. NN0 /\ if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) e. _V ) -> ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) = if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) |
| 234 | 228 231 233 | sylancl | |- ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) -> ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) = if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) |
| 235 | ovex | |- ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) e. _V |
|
| 236 | 229 235 | ifex | |- if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) e. _V |
| 237 | 141 | fvmpt2 | |- ( ( k e. NN0 /\ if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) e. _V ) -> ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` k ) = if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) |
| 238 | 228 236 237 | sylancl | |- ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) -> ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` k ) = if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) |
| 239 | 238 | oveq1d | |- ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) -> ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` k ) x. ( ( 1 - ( 1 / n ) ) ^ k ) ) = ( if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) x. ( ( 1 - ( 1 / n ) ) ^ k ) ) ) |
| 240 | 227 234 239 | 3eqtr4d | |- ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) -> ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) = ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` k ) x. ( ( 1 - ( 1 / n ) ) ^ k ) ) ) |
| 241 | 240 | ralrimiva | |- ( ( T. /\ n e. NN ) -> A. k e. NN0 ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) = ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` k ) x. ( ( 1 - ( 1 / n ) ) ^ k ) ) ) |
| 242 | nfv | |- F/ j ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) = ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` k ) x. ( ( 1 - ( 1 / n ) ) ^ k ) ) |
|
| 243 | nffvmpt1 | |- F/_ k ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) |
|
| 244 | nffvmpt1 | |- F/_ k ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) |
|
| 245 | nfcv | |- F/_ k x. |
|
| 246 | nfcv | |- F/_ k ( ( 1 - ( 1 / n ) ) ^ j ) |
|
| 247 | 244 245 246 | nfov | |- F/_ k ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( ( 1 - ( 1 / n ) ) ^ j ) ) |
| 248 | 243 247 | nfeq | |- F/ k ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) = ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( ( 1 - ( 1 / n ) ) ^ j ) ) |
| 249 | fveq2 | |- ( k = j -> ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) = ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) ) |
|
| 250 | fveq2 | |- ( k = j -> ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` k ) = ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) ) |
|
| 251 | oveq2 | |- ( k = j -> ( ( 1 - ( 1 / n ) ) ^ k ) = ( ( 1 - ( 1 / n ) ) ^ j ) ) |
|
| 252 | 250 251 | oveq12d | |- ( k = j -> ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` k ) x. ( ( 1 - ( 1 / n ) ) ^ k ) ) = ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( ( 1 - ( 1 / n ) ) ^ j ) ) ) |
| 253 | 249 252 | eqeq12d | |- ( k = j -> ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) = ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` k ) x. ( ( 1 - ( 1 / n ) ) ^ k ) ) <-> ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) = ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( ( 1 - ( 1 / n ) ) ^ j ) ) ) ) |
| 254 | 242 248 253 | cbvralw | |- ( A. k e. NN0 ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) = ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` k ) x. ( ( 1 - ( 1 / n ) ) ^ k ) ) <-> A. j e. NN0 ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) = ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( ( 1 - ( 1 / n ) ) ^ j ) ) ) |
| 255 | 241 254 | sylib | |- ( ( T. /\ n e. NN ) -> A. j e. NN0 ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) = ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( ( 1 - ( 1 / n ) ) ^ j ) ) ) |
| 256 | 255 | r19.21bi | |- ( ( ( T. /\ n e. NN ) /\ j e. NN0 ) -> ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) = ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( ( 1 - ( 1 / n ) ) ^ j ) ) ) |
| 257 | 0cnd | |- ( ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) /\ ( k = 0 \/ 2 || k ) ) -> 0 e. CC ) |
|
| 258 | 208 212 | nndivred | |- ( ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) e. RR ) |
| 259 | 258 | recnd | |- ( ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) e. CC ) |
| 260 | 202 259 | mulcld | |- ( ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) /\ ( -. k = 0 /\ -. 2 || k ) ) -> ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) e. CC ) |
| 261 | 6 260 | sylan2b | |- ( ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) /\ -. ( k = 0 \/ 2 || k ) ) -> ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) e. CC ) |
| 262 | 257 261 | ifclda | |- ( ( ( T. /\ n e. NN ) /\ k e. NN0 ) -> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) e. CC ) |
| 263 | 262 | fmpttd | |- ( ( T. /\ n e. NN ) -> ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) : NN0 --> CC ) |
| 264 | 263 | ffvelcdmda | |- ( ( ( T. /\ n e. NN ) /\ j e. NN0 ) -> ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) e. CC ) |
| 265 | 256 264 | eqeltrrd | |- ( ( ( T. /\ n e. NN ) /\ j e. NN0 ) -> ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( ( 1 - ( 1 / n ) ) ^ j ) ) e. CC ) |
| 266 | 0nn0 | |- 0 e. NN0 |
|
| 267 | 266 | a1i | |- ( ( T. /\ n e. NN ) -> 0 e. NN0 ) |
| 268 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 269 | seqeq1 | |- ( ( 0 + 1 ) = 1 -> seq ( 0 + 1 ) ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ) = seq 1 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ) ) |
|
| 270 | 268 269 | ax-mp | |- seq ( 0 + 1 ) ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ) = seq 1 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ) |
| 271 | 1zzd | |- ( ( T. /\ n e. NN ) -> 1 e. ZZ ) |
|
| 272 | elnnuz | |- ( j e. NN <-> j e. ( ZZ>= ` 1 ) ) |
|
| 273 | nnne0 | |- ( k e. NN -> k =/= 0 ) |
|
| 274 | 273 | neneqd | |- ( k e. NN -> -. k = 0 ) |
| 275 | biorf | |- ( -. k = 0 -> ( 2 || k <-> ( k = 0 \/ 2 || k ) ) ) |
|
| 276 | 274 275 | syl | |- ( k e. NN -> ( 2 || k <-> ( k = 0 \/ 2 || k ) ) ) |
| 277 | 276 | bicomd | |- ( k e. NN -> ( ( k = 0 \/ 2 || k ) <-> 2 || k ) ) |
| 278 | 277 | ifbid | |- ( k e. NN -> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) = if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) |
| 279 | 91 231 233 | sylancl | |- ( k e. NN -> ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) = if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) |
| 280 | 229 230 | ifex | |- if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) e. _V |
| 281 | eqid | |- ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) = ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) |
|
| 282 | 281 | fvmpt2 | |- ( ( k e. NN /\ if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) e. _V ) -> ( ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) = if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) |
| 283 | 280 282 | mpan2 | |- ( k e. NN -> ( ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) = if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) |
| 284 | 278 279 283 | 3eqtr4d | |- ( k e. NN -> ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) = ( ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) ) |
| 285 | 284 | rgen | |- A. k e. NN ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) = ( ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) |
| 286 | 285 | a1i | |- ( ( T. /\ n e. NN ) -> A. k e. NN ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) = ( ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) ) |
| 287 | nfv | |- F/ j ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) = ( ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) |
|
| 288 | nffvmpt1 | |- F/_ k ( ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) |
|
| 289 | 243 288 | nfeq | |- F/ k ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) = ( ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) |
| 290 | fveq2 | |- ( k = j -> ( ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) = ( ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) ) |
|
| 291 | 249 290 | eqeq12d | |- ( k = j -> ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) = ( ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) <-> ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) = ( ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) ) ) |
| 292 | 287 289 291 | cbvralw | |- ( A. k e. NN ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) = ( ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` k ) <-> A. j e. NN ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) = ( ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) ) |
| 293 | 286 292 | sylib | |- ( ( T. /\ n e. NN ) -> A. j e. NN ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) = ( ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) ) |
| 294 | 293 | r19.21bi | |- ( ( ( T. /\ n e. NN ) /\ j e. NN ) -> ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) = ( ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) ) |
| 295 | 272 294 | sylan2br | |- ( ( ( T. /\ n e. NN ) /\ j e. ( ZZ>= ` 1 ) ) -> ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) = ( ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` j ) ) |
| 296 | 271 295 | seqfeq | |- ( ( T. /\ n e. NN ) -> seq 1 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ) = seq 1 ( + , ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ) ) |
| 297 | 154 163 168 | abssubge0d | |- ( ( T. /\ n e. NN ) -> ( abs ` ( 1 - ( 1 / n ) ) ) = ( 1 - ( 1 / n ) ) ) |
| 298 | ltsubrp | |- ( ( 1 e. RR /\ ( 1 / n ) e. RR+ ) -> ( 1 - ( 1 / n ) ) < 1 ) |
|
| 299 | 203 153 298 | sylancr | |- ( ( T. /\ n e. NN ) -> ( 1 - ( 1 / n ) ) < 1 ) |
| 300 | 297 299 | eqbrtrd | |- ( ( T. /\ n e. NN ) -> ( abs ` ( 1 - ( 1 / n ) ) ) < 1 ) |
| 301 | 281 | atantayl2 | |- ( ( ( 1 - ( 1 / n ) ) e. CC /\ ( abs ` ( 1 - ( 1 / n ) ) ) < 1 ) -> seq 1 ( + , ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ) ~~> ( arctan ` ( 1 - ( 1 / n ) ) ) ) |
| 302 | 220 300 301 | syl2anc | |- ( ( T. /\ n e. NN ) -> seq 1 ( + , ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ) ~~> ( arctan ` ( 1 - ( 1 / n ) ) ) ) |
| 303 | 296 302 | eqbrtrd | |- ( ( T. /\ n e. NN ) -> seq 1 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ) ~~> ( arctan ` ( 1 - ( 1 / n ) ) ) ) |
| 304 | 270 303 | eqbrtrid | |- ( ( T. /\ n e. NN ) -> seq ( 0 + 1 ) ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ) ~~> ( arctan ` ( 1 - ( 1 / n ) ) ) ) |
| 305 | 2 267 264 304 | clim2ser2 | |- ( ( T. /\ n e. NN ) -> seq 0 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ) ~~> ( ( arctan ` ( 1 - ( 1 / n ) ) ) + ( seq 0 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ) ` 0 ) ) ) |
| 306 | 0z | |- 0 e. ZZ |
|
| 307 | seq1 | |- ( 0 e. ZZ -> ( seq 0 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ) ` 0 ) = ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` 0 ) ) |
|
| 308 | 306 307 | ax-mp | |- ( seq 0 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ) ` 0 ) = ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` 0 ) |
| 309 | iftrue | |- ( ( k = 0 \/ 2 || k ) -> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) = 0 ) |
|
| 310 | 309 | orcs | |- ( k = 0 -> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) = 0 ) |
| 311 | 310 232 229 | fvmpt | |- ( 0 e. NN0 -> ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` 0 ) = 0 ) |
| 312 | 266 311 | ax-mp | |- ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ` 0 ) = 0 |
| 313 | 308 312 | eqtri | |- ( seq 0 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ) ` 0 ) = 0 |
| 314 | 313 | oveq2i | |- ( ( arctan ` ( 1 - ( 1 / n ) ) ) + ( seq 0 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ) ` 0 ) ) = ( ( arctan ` ( 1 - ( 1 / n ) ) ) + 0 ) |
| 315 | atanrecl | |- ( ( 1 - ( 1 / n ) ) e. RR -> ( arctan ` ( 1 - ( 1 / n ) ) ) e. RR ) |
|
| 316 | 205 315 | syl | |- ( ( T. /\ n e. NN ) -> ( arctan ` ( 1 - ( 1 / n ) ) ) e. RR ) |
| 317 | 316 | recnd | |- ( ( T. /\ n e. NN ) -> ( arctan ` ( 1 - ( 1 / n ) ) ) e. CC ) |
| 318 | 317 | addridd | |- ( ( T. /\ n e. NN ) -> ( ( arctan ` ( 1 - ( 1 / n ) ) ) + 0 ) = ( arctan ` ( 1 - ( 1 / n ) ) ) ) |
| 319 | 314 318 | eqtrid | |- ( ( T. /\ n e. NN ) -> ( ( arctan ` ( 1 - ( 1 / n ) ) ) + ( seq 0 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ) ` 0 ) ) = ( arctan ` ( 1 - ( 1 / n ) ) ) ) |
| 320 | 305 319 | breqtrd | |- ( ( T. /\ n e. NN ) -> seq 0 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( ( 1 - ( 1 / n ) ) ^ k ) / k ) ) ) ) ) ~~> ( arctan ` ( 1 - ( 1 / n ) ) ) ) |
| 321 | 2 198 256 265 320 | isumclim | |- ( ( T. /\ n e. NN ) -> sum_ j e. NN0 ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( ( 1 - ( 1 / n ) ) ^ j ) ) = ( arctan ` ( 1 - ( 1 / n ) ) ) ) |
| 322 | 321 | mpteq2dva | |- ( T. -> ( n e. NN |-> sum_ j e. NN0 ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( ( 1 - ( 1 / n ) ) ^ j ) ) ) = ( n e. NN |-> ( arctan ` ( 1 - ( 1 / n ) ) ) ) ) |
| 323 | 197 322 | eqtrd | |- ( T. -> ( ( x e. ( 0 [,] 1 ) |-> sum_ j e. NN0 ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( x ^ j ) ) ) o. ( n e. NN |-> ( 1 - ( 1 / n ) ) ) ) = ( n e. NN |-> ( arctan ` ( 1 - ( 1 / n ) ) ) ) ) |
| 324 | oveq1 | |- ( x = 1 -> ( x ^ j ) = ( 1 ^ j ) ) |
|
| 325 | nn0z | |- ( j e. NN0 -> j e. ZZ ) |
|
| 326 | 1exp | |- ( j e. ZZ -> ( 1 ^ j ) = 1 ) |
|
| 327 | 325 326 | syl | |- ( j e. NN0 -> ( 1 ^ j ) = 1 ) |
| 328 | 324 327 | sylan9eq | |- ( ( x = 1 /\ j e. NN0 ) -> ( x ^ j ) = 1 ) |
| 329 | 328 | oveq2d | |- ( ( x = 1 /\ j e. NN0 ) -> ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( x ^ j ) ) = ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. 1 ) ) |
| 330 | 18 | mptru | |- ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) : NN0 --> CC |
| 331 | 330 | ffvelcdmi | |- ( j e. NN0 -> ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) e. CC ) |
| 332 | 331 | mulridd | |- ( j e. NN0 -> ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. 1 ) = ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) ) |
| 333 | 332 | adantl | |- ( ( x = 1 /\ j e. NN0 ) -> ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. 1 ) = ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) ) |
| 334 | 329 333 | eqtrd | |- ( ( x = 1 /\ j e. NN0 ) -> ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( x ^ j ) ) = ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) ) |
| 335 | 334 | sumeq2dv | |- ( x = 1 -> sum_ j e. NN0 ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( x ^ j ) ) = sum_ j e. NN0 ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) ) |
| 336 | sumex | |- sum_ j e. NN0 ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) e. _V |
|
| 337 | 335 149 336 | fvmpt | |- ( 1 e. ( 0 [,] 1 ) -> ( ( x e. ( 0 [,] 1 ) |-> sum_ j e. NN0 ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( x ^ j ) ) ) ` 1 ) = sum_ j e. NN0 ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) ) |
| 338 | 189 337 | mp1i | |- ( T. -> ( ( x e. ( 0 [,] 1 ) |-> sum_ j e. NN0 ( ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) x. ( x ^ j ) ) ) ` 1 ) = sum_ j e. NN0 ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) ) |
| 339 | 191 323 338 | 3brtr3d | |- ( T. -> ( n e. NN |-> ( arctan ` ( 1 - ( 1 / n ) ) ) ) ~~> sum_ j e. NN0 ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) ) |
| 340 | eqid | |- ( CC \ ( -oo (,] 0 ) ) = ( CC \ ( -oo (,] 0 ) ) |
|
| 341 | eqid | |- { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } = { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } |
|
| 342 | 340 341 | atancn | |- ( arctan |` { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) e. ( { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } -cn-> CC ) |
| 343 | 342 | a1i | |- ( T. -> ( arctan |` { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) e. ( { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } -cn-> CC ) ) |
| 344 | unitssre | |- ( 0 [,] 1 ) C_ RR |
|
| 345 | 340 341 | ressatans | |- RR C_ { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } |
| 346 | 344 345 | sstri | |- ( 0 [,] 1 ) C_ { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } |
| 347 | fss | |- ( ( ( n e. NN |-> ( 1 - ( 1 / n ) ) ) : NN --> ( 0 [,] 1 ) /\ ( 0 [,] 1 ) C_ { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) -> ( n e. NN |-> ( 1 - ( 1 / n ) ) ) : NN --> { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) |
|
| 348 | 173 346 347 | sylancl | |- ( T. -> ( n e. NN |-> ( 1 - ( 1 / n ) ) ) : NN --> { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) |
| 349 | 345 203 | sselii | |- 1 e. { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } |
| 350 | 349 | a1i | |- ( T. -> 1 e. { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) |
| 351 | 75 76 343 348 188 350 | climcncf | |- ( T. -> ( ( arctan |` { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) o. ( n e. NN |-> ( 1 - ( 1 / n ) ) ) ) ~~> ( ( arctan |` { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) ` 1 ) ) |
| 352 | 346 172 | sselid | |- ( ( T. /\ n e. NN ) -> ( 1 - ( 1 / n ) ) e. { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) |
| 353 | cncff | |- ( ( arctan |` { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) e. ( { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } -cn-> CC ) -> ( arctan |` { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) : { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } --> CC ) |
|
| 354 | 342 353 | mp1i | |- ( T. -> ( arctan |` { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) : { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } --> CC ) |
| 355 | 354 | feqmptd | |- ( T. -> ( arctan |` { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) = ( k e. { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } |-> ( ( arctan |` { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) ` k ) ) ) |
| 356 | fvres | |- ( k e. { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } -> ( ( arctan |` { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) ` k ) = ( arctan ` k ) ) |
|
| 357 | 356 | mpteq2ia | |- ( k e. { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } |-> ( ( arctan |` { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) ` k ) ) = ( k e. { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } |-> ( arctan ` k ) ) |
| 358 | 355 357 | eqtrdi | |- ( T. -> ( arctan |` { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) = ( k e. { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } |-> ( arctan ` k ) ) ) |
| 359 | fveq2 | |- ( k = ( 1 - ( 1 / n ) ) -> ( arctan ` k ) = ( arctan ` ( 1 - ( 1 / n ) ) ) ) |
|
| 360 | 352 192 358 359 | fmptco | |- ( T. -> ( ( arctan |` { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) o. ( n e. NN |-> ( 1 - ( 1 / n ) ) ) ) = ( n e. NN |-> ( arctan ` ( 1 - ( 1 / n ) ) ) ) ) |
| 361 | fvres | |- ( 1 e. { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } -> ( ( arctan |` { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) ` 1 ) = ( arctan ` 1 ) ) |
|
| 362 | 349 361 | mp1i | |- ( T. -> ( ( arctan |` { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) ` 1 ) = ( arctan ` 1 ) ) |
| 363 | atan1 | |- ( arctan ` 1 ) = ( _pi / 4 ) |
|
| 364 | 362 363 | eqtrdi | |- ( T. -> ( ( arctan |` { x e. CC | ( 1 + ( x ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) } ) ` 1 ) = ( _pi / 4 ) ) |
| 365 | 351 360 364 | 3brtr3d | |- ( T. -> ( n e. NN |-> ( arctan ` ( 1 - ( 1 / n ) ) ) ) ~~> ( _pi / 4 ) ) |
| 366 | climuni | |- ( ( ( n e. NN |-> ( arctan ` ( 1 - ( 1 / n ) ) ) ) ~~> sum_ j e. NN0 ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) /\ ( n e. NN |-> ( arctan ` ( 1 - ( 1 / n ) ) ) ) ~~> ( _pi / 4 ) ) -> sum_ j e. NN0 ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) = ( _pi / 4 ) ) |
|
| 367 | 339 365 366 | syl2anc | |- ( T. -> sum_ j e. NN0 ( ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ` j ) = ( _pi / 4 ) ) |
| 368 | 148 367 | breqtrd | |- ( T. -> seq 0 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ) ~~> ( _pi / 4 ) ) |
| 369 | 368 | mptru | |- seq 0 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ) ~~> ( _pi / 4 ) |
| 370 | ovex | |- ( _pi / 4 ) e. _V |
|
| 371 | 1 141 370 | leibpilem2 | |- ( seq 0 ( + , F ) ~~> ( _pi / 4 ) <-> seq 0 ( + , ( k e. NN0 |-> if ( ( k = 0 \/ 2 || k ) , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) / k ) ) ) ) ~~> ( _pi / 4 ) ) |
| 372 | 369 371 | mpbir | |- seq 0 ( + , F ) ~~> ( _pi / 4 ) |