This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The arctangent of 1 is _pi / 4 . (Contributed by Mario Carneiro, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atan1 | |- ( arctan ` 1 ) = ( _pi / 4 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tan4thpi | |- ( tan ` ( _pi / 4 ) ) = 1 |
|
| 2 | 1 | fveq2i | |- ( arctan ` ( tan ` ( _pi / 4 ) ) ) = ( arctan ` 1 ) |
| 3 | pire | |- _pi e. RR |
|
| 4 | 4nn | |- 4 e. NN |
|
| 5 | nndivre | |- ( ( _pi e. RR /\ 4 e. NN ) -> ( _pi / 4 ) e. RR ) |
|
| 6 | 3 4 5 | mp2an | |- ( _pi / 4 ) e. RR |
| 7 | 6 | recni | |- ( _pi / 4 ) e. CC |
| 8 | rere | |- ( ( _pi / 4 ) e. RR -> ( Re ` ( _pi / 4 ) ) = ( _pi / 4 ) ) |
|
| 9 | 6 8 | ax-mp | |- ( Re ` ( _pi / 4 ) ) = ( _pi / 4 ) |
| 10 | pirp | |- _pi e. RR+ |
|
| 11 | rphalfcl | |- ( _pi e. RR+ -> ( _pi / 2 ) e. RR+ ) |
|
| 12 | 10 11 | ax-mp | |- ( _pi / 2 ) e. RR+ |
| 13 | rpgt0 | |- ( ( _pi / 2 ) e. RR+ -> 0 < ( _pi / 2 ) ) |
|
| 14 | 12 13 | ax-mp | |- 0 < ( _pi / 2 ) |
| 15 | halfpire | |- ( _pi / 2 ) e. RR |
|
| 16 | lt0neg2 | |- ( ( _pi / 2 ) e. RR -> ( 0 < ( _pi / 2 ) <-> -u ( _pi / 2 ) < 0 ) ) |
|
| 17 | 15 16 | ax-mp | |- ( 0 < ( _pi / 2 ) <-> -u ( _pi / 2 ) < 0 ) |
| 18 | 14 17 | mpbi | |- -u ( _pi / 2 ) < 0 |
| 19 | nnrp | |- ( 4 e. NN -> 4 e. RR+ ) |
|
| 20 | 4 19 | ax-mp | |- 4 e. RR+ |
| 21 | rpdivcl | |- ( ( _pi e. RR+ /\ 4 e. RR+ ) -> ( _pi / 4 ) e. RR+ ) |
|
| 22 | 10 20 21 | mp2an | |- ( _pi / 4 ) e. RR+ |
| 23 | rpgt0 | |- ( ( _pi / 4 ) e. RR+ -> 0 < ( _pi / 4 ) ) |
|
| 24 | 22 23 | ax-mp | |- 0 < ( _pi / 4 ) |
| 25 | neghalfpire | |- -u ( _pi / 2 ) e. RR |
|
| 26 | 0re | |- 0 e. RR |
|
| 27 | 25 26 6 | lttri | |- ( ( -u ( _pi / 2 ) < 0 /\ 0 < ( _pi / 4 ) ) -> -u ( _pi / 2 ) < ( _pi / 4 ) ) |
| 28 | 18 24 27 | mp2an | |- -u ( _pi / 2 ) < ( _pi / 4 ) |
| 29 | 3 | recni | |- _pi e. CC |
| 30 | 2cnne0 | |- ( 2 e. CC /\ 2 =/= 0 ) |
|
| 31 | divdiv1 | |- ( ( _pi e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( _pi / 2 ) / 2 ) = ( _pi / ( 2 x. 2 ) ) ) |
|
| 32 | 29 30 30 31 | mp3an | |- ( ( _pi / 2 ) / 2 ) = ( _pi / ( 2 x. 2 ) ) |
| 33 | 2t2e4 | |- ( 2 x. 2 ) = 4 |
|
| 34 | 33 | oveq2i | |- ( _pi / ( 2 x. 2 ) ) = ( _pi / 4 ) |
| 35 | 32 34 | eqtri | |- ( ( _pi / 2 ) / 2 ) = ( _pi / 4 ) |
| 36 | rphalflt | |- ( ( _pi / 2 ) e. RR+ -> ( ( _pi / 2 ) / 2 ) < ( _pi / 2 ) ) |
|
| 37 | 12 36 | ax-mp | |- ( ( _pi / 2 ) / 2 ) < ( _pi / 2 ) |
| 38 | 35 37 | eqbrtrri | |- ( _pi / 4 ) < ( _pi / 2 ) |
| 39 | 25 | rexri | |- -u ( _pi / 2 ) e. RR* |
| 40 | 15 | rexri | |- ( _pi / 2 ) e. RR* |
| 41 | elioo2 | |- ( ( -u ( _pi / 2 ) e. RR* /\ ( _pi / 2 ) e. RR* ) -> ( ( _pi / 4 ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) <-> ( ( _pi / 4 ) e. RR /\ -u ( _pi / 2 ) < ( _pi / 4 ) /\ ( _pi / 4 ) < ( _pi / 2 ) ) ) ) |
|
| 42 | 39 40 41 | mp2an | |- ( ( _pi / 4 ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) <-> ( ( _pi / 4 ) e. RR /\ -u ( _pi / 2 ) < ( _pi / 4 ) /\ ( _pi / 4 ) < ( _pi / 2 ) ) ) |
| 43 | 6 28 38 42 | mpbir3an | |- ( _pi / 4 ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) |
| 44 | 9 43 | eqeltri | |- ( Re ` ( _pi / 4 ) ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) |
| 45 | atantan | |- ( ( ( _pi / 4 ) e. CC /\ ( Re ` ( _pi / 4 ) ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( arctan ` ( tan ` ( _pi / 4 ) ) ) = ( _pi / 4 ) ) |
|
| 46 | 7 44 45 | mp2an | |- ( arctan ` ( tan ` ( _pi / 4 ) ) ) = ( _pi / 4 ) |
| 47 | 2 46 | eqtr3i | |- ( arctan ` 1 ) = ( _pi / 4 ) |