This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 7-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climcncf.1 | |- Z = ( ZZ>= ` M ) |
|
| climcncf.2 | |- ( ph -> M e. ZZ ) |
||
| climcncf.4 | |- ( ph -> F e. ( A -cn-> B ) ) |
||
| climcncf.5 | |- ( ph -> G : Z --> A ) |
||
| climcncf.6 | |- ( ph -> G ~~> D ) |
||
| climcncf.7 | |- ( ph -> D e. A ) |
||
| Assertion | climcncf | |- ( ph -> ( F o. G ) ~~> ( F ` D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climcncf.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | climcncf.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | climcncf.4 | |- ( ph -> F e. ( A -cn-> B ) ) |
|
| 4 | climcncf.5 | |- ( ph -> G : Z --> A ) |
|
| 5 | climcncf.6 | |- ( ph -> G ~~> D ) |
|
| 6 | climcncf.7 | |- ( ph -> D e. A ) |
|
| 7 | cncff | |- ( F e. ( A -cn-> B ) -> F : A --> B ) |
|
| 8 | 3 7 | syl | |- ( ph -> F : A --> B ) |
| 9 | 8 | ffvelcdmda | |- ( ( ph /\ z e. A ) -> ( F ` z ) e. B ) |
| 10 | cncfrss2 | |- ( F e. ( A -cn-> B ) -> B C_ CC ) |
|
| 11 | 3 10 | syl | |- ( ph -> B C_ CC ) |
| 12 | 11 | sselda | |- ( ( ph /\ ( F ` z ) e. B ) -> ( F ` z ) e. CC ) |
| 13 | 9 12 | syldan | |- ( ( ph /\ z e. A ) -> ( F ` z ) e. CC ) |
| 14 | 1 | fvexi | |- Z e. _V |
| 15 | fex | |- ( ( G : Z --> A /\ Z e. _V ) -> G e. _V ) |
|
| 16 | 4 14 15 | sylancl | |- ( ph -> G e. _V ) |
| 17 | coexg | |- ( ( F e. ( A -cn-> B ) /\ G e. _V ) -> ( F o. G ) e. _V ) |
|
| 18 | 3 16 17 | syl2anc | |- ( ph -> ( F o. G ) e. _V ) |
| 19 | cncfi | |- ( ( F e. ( A -cn-> B ) /\ D e. A /\ x e. RR+ ) -> E. y e. RR+ A. z e. A ( ( abs ` ( z - D ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` D ) ) ) < x ) ) |
|
| 20 | 19 | 3expia | |- ( ( F e. ( A -cn-> B ) /\ D e. A ) -> ( x e. RR+ -> E. y e. RR+ A. z e. A ( ( abs ` ( z - D ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` D ) ) ) < x ) ) ) |
| 21 | 3 6 20 | syl2anc | |- ( ph -> ( x e. RR+ -> E. y e. RR+ A. z e. A ( ( abs ` ( z - D ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` D ) ) ) < x ) ) ) |
| 22 | 21 | imp | |- ( ( ph /\ x e. RR+ ) -> E. y e. RR+ A. z e. A ( ( abs ` ( z - D ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` D ) ) ) < x ) ) |
| 23 | 4 | ffvelcdmda | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. A ) |
| 24 | fvco3 | |- ( ( G : Z --> A /\ k e. Z ) -> ( ( F o. G ) ` k ) = ( F ` ( G ` k ) ) ) |
|
| 25 | 4 24 | sylan | |- ( ( ph /\ k e. Z ) -> ( ( F o. G ) ` k ) = ( F ` ( G ` k ) ) ) |
| 26 | 1 2 6 13 5 18 22 23 25 | climcn1 | |- ( ph -> ( F o. G ) ~~> ( F ` D ) ) |