This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Leibniz formula for _pi . This proof depends on three main facts: (1) the series F is convergent, because it is an alternating series ( iseralt ). (2) Using leibpilem2 to rewrite the series as a power series, it is the x = 1 special case of the Taylor series for arctan ( atantayl2 ). (3) Although we cannot directly plug x = 1 into atantayl2 , Abel's theorem ( abelth2 ) says that the limit along any sequence converging to 1 , such as 1 - 1 / n , of the power series converges to the power series extended to 1 , and then since arctan is continuous at 1 ( atancn ) we get the desired result. This is Metamath 100 proof #26. (Contributed by Mario Carneiro, 7-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | leibpi.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ) | |
| Assertion | leibpi | ⊢ seq 0 ( + , 𝐹 ) ⇝ ( π / 4 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leibpi.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ) | |
| 2 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 3 | 0zd | ⊢ ( ⊤ → 0 ∈ ℤ ) | |
| 4 | eqidd | ⊢ ( ( ⊤ ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) = ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) ) | |
| 5 | 0cnd | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) ) → 0 ∈ ℂ ) | |
| 6 | ioran | ⊢ ( ¬ ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) ↔ ( ¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘 ) ) | |
| 7 | neg1rr | ⊢ - 1 ∈ ℝ | |
| 8 | leibpilem1 | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘 ) ) → ( 𝑘 ∈ ℕ ∧ ( ( 𝑘 − 1 ) / 2 ) ∈ ℕ0 ) ) | |
| 9 | 8 | simprd | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘 ) ) → ( ( 𝑘 − 1 ) / 2 ) ∈ ℕ0 ) |
| 10 | reexpcl | ⊢ ( ( - 1 ∈ ℝ ∧ ( ( 𝑘 − 1 ) / 2 ) ∈ ℕ0 ) → ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) ∈ ℝ ) | |
| 11 | 7 9 10 | sylancr | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘 ) ) → ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) ∈ ℝ ) |
| 12 | 8 | simpld | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘 ) ) → 𝑘 ∈ ℕ ) |
| 13 | 11 12 | nndivred | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘 ) ) → ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ∈ ℝ ) |
| 14 | 13 | recnd | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘 ) ) → ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ∈ ℂ ) |
| 15 | 6 14 | sylan2b | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ¬ ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) ) → ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ∈ ℂ ) |
| 16 | 5 15 | ifclda | ⊢ ( 𝑘 ∈ ℕ0 → if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ∈ ℂ ) |
| 17 | 16 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ∈ ℂ ) |
| 18 | 17 | fmpttd | ⊢ ( ⊤ → ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) : ℕ0 ⟶ ℂ ) |
| 19 | 18 | ffvelcdmda | ⊢ ( ( ⊤ ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) ∈ ℂ ) |
| 20 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 21 | 20 | a1i | ⊢ ( ⊤ → 2 ∈ ℕ0 ) |
| 22 | nn0mulcl | ⊢ ( ( 2 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) → ( 2 · 𝑛 ) ∈ ℕ0 ) | |
| 23 | 21 22 | sylan | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ0 ) → ( 2 · 𝑛 ) ∈ ℕ0 ) |
| 24 | nn0p1nn | ⊢ ( ( 2 · 𝑛 ) ∈ ℕ0 → ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ ) | |
| 25 | 23 24 | syl | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ0 ) → ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ ) |
| 26 | 25 | nnrecred | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ0 ) → ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℝ ) |
| 27 | 26 | fmpttd | ⊢ ( ⊤ → ( 𝑛 ∈ ℕ0 ↦ ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) : ℕ0 ⟶ ℝ ) |
| 28 | nn0mulcl | ⊢ ( ( 2 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( 2 · 𝑘 ) ∈ ℕ0 ) | |
| 29 | 21 28 | sylan | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 2 · 𝑘 ) ∈ ℕ0 ) |
| 30 | 29 | nn0red | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 2 · 𝑘 ) ∈ ℝ ) |
| 31 | peano2nn0 | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ0 ) | |
| 32 | 31 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 + 1 ) ∈ ℕ0 ) |
| 33 | nn0mulcl | ⊢ ( ( 2 ∈ ℕ0 ∧ ( 𝑘 + 1 ) ∈ ℕ0 ) → ( 2 · ( 𝑘 + 1 ) ) ∈ ℕ0 ) | |
| 34 | 20 32 33 | sylancr | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 2 · ( 𝑘 + 1 ) ) ∈ ℕ0 ) |
| 35 | 34 | nn0red | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 2 · ( 𝑘 + 1 ) ) ∈ ℝ ) |
| 36 | 1red | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → 1 ∈ ℝ ) | |
| 37 | nn0re | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℝ ) | |
| 38 | 37 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℝ ) |
| 39 | 38 | lep1d | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ≤ ( 𝑘 + 1 ) ) |
| 40 | peano2re | ⊢ ( 𝑘 ∈ ℝ → ( 𝑘 + 1 ) ∈ ℝ ) | |
| 41 | 38 40 | syl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 + 1 ) ∈ ℝ ) |
| 42 | 2re | ⊢ 2 ∈ ℝ | |
| 43 | 42 | a1i | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → 2 ∈ ℝ ) |
| 44 | 2pos | ⊢ 0 < 2 | |
| 45 | 44 | a1i | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → 0 < 2 ) |
| 46 | lemul2 | ⊢ ( ( 𝑘 ∈ ℝ ∧ ( 𝑘 + 1 ) ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( 𝑘 ≤ ( 𝑘 + 1 ) ↔ ( 2 · 𝑘 ) ≤ ( 2 · ( 𝑘 + 1 ) ) ) ) | |
| 47 | 38 41 43 45 46 | syl112anc | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ≤ ( 𝑘 + 1 ) ↔ ( 2 · 𝑘 ) ≤ ( 2 · ( 𝑘 + 1 ) ) ) ) |
| 48 | 39 47 | mpbid | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 2 · 𝑘 ) ≤ ( 2 · ( 𝑘 + 1 ) ) ) |
| 49 | 30 35 36 48 | leadd1dd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( 2 · 𝑘 ) + 1 ) ≤ ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) ) |
| 50 | nn0p1nn | ⊢ ( ( 2 · 𝑘 ) ∈ ℕ0 → ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ ) | |
| 51 | 29 50 | syl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ ) |
| 52 | 51 | nnred | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( 2 · 𝑘 ) + 1 ) ∈ ℝ ) |
| 53 | 51 | nngt0d | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → 0 < ( ( 2 · 𝑘 ) + 1 ) ) |
| 54 | nn0p1nn | ⊢ ( ( 2 · ( 𝑘 + 1 ) ) ∈ ℕ0 → ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) ∈ ℕ ) | |
| 55 | 34 54 | syl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) ∈ ℕ ) |
| 56 | 55 | nnred | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) ∈ ℝ ) |
| 57 | 55 | nngt0d | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → 0 < ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) ) |
| 58 | lerec | ⊢ ( ( ( ( ( 2 · 𝑘 ) + 1 ) ∈ ℝ ∧ 0 < ( ( 2 · 𝑘 ) + 1 ) ) ∧ ( ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) ∈ ℝ ∧ 0 < ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) ) ) → ( ( ( 2 · 𝑘 ) + 1 ) ≤ ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) ↔ ( 1 / ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) ) ≤ ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ) ) | |
| 59 | 52 53 56 57 58 | syl22anc | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 2 · 𝑘 ) + 1 ) ≤ ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) ↔ ( 1 / ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) ) ≤ ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
| 60 | 49 59 | mpbid | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 1 / ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) ) ≤ ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 61 | oveq2 | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 2 · 𝑛 ) = ( 2 · ( 𝑘 + 1 ) ) ) | |
| 62 | 61 | oveq1d | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ( 2 · 𝑛 ) + 1 ) = ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) ) |
| 63 | 62 | oveq2d | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) = ( 1 / ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) ) ) |
| 64 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) | |
| 65 | ovex | ⊢ ( 1 / ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) ) ∈ V | |
| 66 | 63 64 65 | fvmpt | ⊢ ( ( 𝑘 + 1 ) ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ‘ ( 𝑘 + 1 ) ) = ( 1 / ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) ) ) |
| 67 | 32 66 | syl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ‘ ( 𝑘 + 1 ) ) = ( 1 / ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) ) ) |
| 68 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( 2 · 𝑛 ) = ( 2 · 𝑘 ) ) | |
| 69 | 68 | oveq1d | ⊢ ( 𝑛 = 𝑘 → ( ( 2 · 𝑛 ) + 1 ) = ( ( 2 · 𝑘 ) + 1 ) ) |
| 70 | 69 | oveq2d | ⊢ ( 𝑛 = 𝑘 → ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) = ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 71 | ovex | ⊢ ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ∈ V | |
| 72 | 70 64 71 | fvmpt | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ‘ 𝑘 ) = ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 73 | 72 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ‘ 𝑘 ) = ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 74 | 60 67 73 | 3brtr4d | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ‘ ( 𝑘 + 1 ) ) ≤ ( ( 𝑛 ∈ ℕ0 ↦ ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ‘ 𝑘 ) ) |
| 75 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 76 | 1zzd | ⊢ ( ⊤ → 1 ∈ ℤ ) | |
| 77 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 78 | divcnv | ⊢ ( 1 ∈ ℂ → ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ⇝ 0 ) | |
| 79 | 77 78 | mp1i | ⊢ ( ⊤ → ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ⇝ 0 ) |
| 80 | nn0ex | ⊢ ℕ0 ∈ V | |
| 81 | 80 | mptex | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ∈ V |
| 82 | 81 | a1i | ⊢ ( ⊤ → ( 𝑛 ∈ ℕ0 ↦ ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ∈ V ) |
| 83 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( 1 / 𝑛 ) = ( 1 / 𝑘 ) ) | |
| 84 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) = ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) | |
| 85 | ovex | ⊢ ( 1 / 𝑘 ) ∈ V | |
| 86 | 83 84 85 | fvmpt | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ‘ 𝑘 ) = ( 1 / 𝑘 ) ) |
| 87 | 86 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ‘ 𝑘 ) = ( 1 / 𝑘 ) ) |
| 88 | nnrecre | ⊢ ( 𝑘 ∈ ℕ → ( 1 / 𝑘 ) ∈ ℝ ) | |
| 89 | 88 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ∈ ℝ ) |
| 90 | 87 89 | eqeltrd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 91 | nnnn0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) | |
| 92 | 91 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ0 ) |
| 93 | 92 72 | syl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ‘ 𝑘 ) = ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 94 | 91 51 | sylan2 | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ ) |
| 95 | 94 | nnrecred | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℝ ) |
| 96 | 93 95 | eqeltrd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 97 | nnre | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ ) | |
| 98 | 97 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℝ ) |
| 99 | 20 92 28 | sylancr | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 2 · 𝑘 ) ∈ ℕ0 ) |
| 100 | 99 | nn0red | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 2 · 𝑘 ) ∈ ℝ ) |
| 101 | peano2re | ⊢ ( ( 2 · 𝑘 ) ∈ ℝ → ( ( 2 · 𝑘 ) + 1 ) ∈ ℝ ) | |
| 102 | 100 101 | syl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 2 · 𝑘 ) + 1 ) ∈ ℝ ) |
| 103 | nn0addge1 | ⊢ ( ( 𝑘 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ≤ ( 𝑘 + 𝑘 ) ) | |
| 104 | 98 92 103 | syl2anc | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → 𝑘 ≤ ( 𝑘 + 𝑘 ) ) |
| 105 | 98 | recnd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℂ ) |
| 106 | 105 | 2timesd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 2 · 𝑘 ) = ( 𝑘 + 𝑘 ) ) |
| 107 | 104 106 | breqtrrd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → 𝑘 ≤ ( 2 · 𝑘 ) ) |
| 108 | 100 | lep1d | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 2 · 𝑘 ) ≤ ( ( 2 · 𝑘 ) + 1 ) ) |
| 109 | 98 100 102 107 108 | letrd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → 𝑘 ≤ ( ( 2 · 𝑘 ) + 1 ) ) |
| 110 | nngt0 | ⊢ ( 𝑘 ∈ ℕ → 0 < 𝑘 ) | |
| 111 | 110 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → 0 < 𝑘 ) |
| 112 | 94 | nnred | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 2 · 𝑘 ) + 1 ) ∈ ℝ ) |
| 113 | 94 | nngt0d | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → 0 < ( ( 2 · 𝑘 ) + 1 ) ) |
| 114 | lerec | ⊢ ( ( ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ∧ ( ( ( 2 · 𝑘 ) + 1 ) ∈ ℝ ∧ 0 < ( ( 2 · 𝑘 ) + 1 ) ) ) → ( 𝑘 ≤ ( ( 2 · 𝑘 ) + 1 ) ↔ ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ≤ ( 1 / 𝑘 ) ) ) | |
| 115 | 98 111 112 113 114 | syl22anc | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝑘 ≤ ( ( 2 · 𝑘 ) + 1 ) ↔ ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ≤ ( 1 / 𝑘 ) ) ) |
| 116 | 109 115 | mpbid | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ≤ ( 1 / 𝑘 ) ) |
| 117 | 116 93 87 | 3brtr4d | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ‘ 𝑘 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ‘ 𝑘 ) ) |
| 118 | 94 | nnrpd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 2 · 𝑘 ) + 1 ) ∈ ℝ+ ) |
| 119 | 118 | rpreccld | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℝ+ ) |
| 120 | 119 | rpge0d | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 121 | 120 93 | breqtrrd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( ( 𝑛 ∈ ℕ0 ↦ ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ‘ 𝑘 ) ) |
| 122 | 75 76 79 82 90 96 117 121 | climsqz2 | ⊢ ( ⊤ → ( 𝑛 ∈ ℕ0 ↦ ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ⇝ 0 ) |
| 123 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 124 | 123 | a1i | ⊢ ( ⊤ → - 1 ∈ ℂ ) |
| 125 | expcl | ⊢ ( ( - 1 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( - 1 ↑ 𝑘 ) ∈ ℂ ) | |
| 126 | 124 125 | sylan | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( - 1 ↑ 𝑘 ) ∈ ℂ ) |
| 127 | 51 | nncnd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( 2 · 𝑘 ) + 1 ) ∈ ℂ ) |
| 128 | 51 | nnne0d | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( 2 · 𝑘 ) + 1 ) ≠ 0 ) |
| 129 | 126 127 128 | divrecd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) = ( ( - 1 ↑ 𝑘 ) · ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
| 130 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( - 1 ↑ 𝑛 ) = ( - 1 ↑ 𝑘 ) ) | |
| 131 | 130 69 | oveq12d | ⊢ ( 𝑛 = 𝑘 → ( ( - 1 ↑ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( - 1 ↑ 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 132 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ) | |
| 133 | ovex | ⊢ ( ( - 1 ↑ 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ∈ V | |
| 134 | 131 132 133 | fvmpt | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ‘ 𝑘 ) = ( ( - 1 ↑ 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 135 | 134 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ‘ 𝑘 ) = ( ( - 1 ↑ 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 136 | 73 | oveq2d | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑘 ) · ( ( 𝑛 ∈ ℕ0 ↦ ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ‘ 𝑘 ) ) = ( ( - 1 ↑ 𝑘 ) · ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
| 137 | 129 135 136 | 3eqtr4d | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ‘ 𝑘 ) = ( ( - 1 ↑ 𝑘 ) · ( ( 𝑛 ∈ ℕ0 ↦ ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ‘ 𝑘 ) ) ) |
| 138 | 2 3 27 74 122 137 | iseralt | ⊢ ( ⊤ → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ∈ dom ⇝ ) |
| 139 | climdm | ⊢ ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ∈ dom ⇝ ↔ seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ⇝ ( ⇝ ‘ seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) ) | |
| 140 | 138 139 | sylib | ⊢ ( ⊤ → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ⇝ ( ⇝ ‘ seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) ) |
| 141 | eqid | ⊢ ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) | |
| 142 | fvex | ⊢ ( ⇝ ‘ seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) ∈ V | |
| 143 | 132 141 142 | leibpilem2 | ⊢ ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ⇝ ( ⇝ ‘ seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) ↔ seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ) ⇝ ( ⇝ ‘ seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) ) |
| 144 | 140 143 | sylib | ⊢ ( ⊤ → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ) ⇝ ( ⇝ ‘ seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) ) |
| 145 | seqex | ⊢ seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ) ∈ V | |
| 146 | 145 142 | breldm | ⊢ ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ) ⇝ ( ⇝ ‘ seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ) ∈ dom ⇝ ) |
| 147 | 144 146 | syl | ⊢ ( ⊤ → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ) ∈ dom ⇝ ) |
| 148 | 2 3 4 19 147 | isumclim2 | ⊢ ( ⊤ → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ) ⇝ Σ 𝑗 ∈ ℕ0 ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) ) |
| 149 | eqid | ⊢ ( 𝑥 ∈ ( 0 [,] 1 ) ↦ Σ 𝑗 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) · ( 𝑥 ↑ 𝑗 ) ) ) = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ Σ 𝑗 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) · ( 𝑥 ↑ 𝑗 ) ) ) | |
| 150 | 18 147 149 | abelth2 | ⊢ ( ⊤ → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ Σ 𝑗 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) · ( 𝑥 ↑ 𝑗 ) ) ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) |
| 151 | nnrp | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) | |
| 152 | 151 | adantl | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℝ+ ) |
| 153 | 152 | rpreccld | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → ( 1 / 𝑛 ) ∈ ℝ+ ) |
| 154 | 153 | rpred | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 155 | 153 | rpge0d | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → 0 ≤ ( 1 / 𝑛 ) ) |
| 156 | nnge1 | ⊢ ( 𝑛 ∈ ℕ → 1 ≤ 𝑛 ) | |
| 157 | 156 | adantl | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → 1 ≤ 𝑛 ) |
| 158 | nnre | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) | |
| 159 | 158 | adantl | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℝ ) |
| 160 | 159 | recnd | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℂ ) |
| 161 | 160 | mulridd | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → ( 𝑛 · 1 ) = 𝑛 ) |
| 162 | 157 161 | breqtrrd | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → 1 ≤ ( 𝑛 · 1 ) ) |
| 163 | 1red | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → 1 ∈ ℝ ) | |
| 164 | nngt0 | ⊢ ( 𝑛 ∈ ℕ → 0 < 𝑛 ) | |
| 165 | 164 | adantl | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → 0 < 𝑛 ) |
| 166 | ledivmul | ⊢ ( ( 1 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 𝑛 ∈ ℝ ∧ 0 < 𝑛 ) ) → ( ( 1 / 𝑛 ) ≤ 1 ↔ 1 ≤ ( 𝑛 · 1 ) ) ) | |
| 167 | 163 163 159 165 166 | syl112anc | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → ( ( 1 / 𝑛 ) ≤ 1 ↔ 1 ≤ ( 𝑛 · 1 ) ) ) |
| 168 | 162 167 | mpbird | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → ( 1 / 𝑛 ) ≤ 1 ) |
| 169 | elicc01 | ⊢ ( ( 1 / 𝑛 ) ∈ ( 0 [,] 1 ) ↔ ( ( 1 / 𝑛 ) ∈ ℝ ∧ 0 ≤ ( 1 / 𝑛 ) ∧ ( 1 / 𝑛 ) ≤ 1 ) ) | |
| 170 | 154 155 168 169 | syl3anbrc | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → ( 1 / 𝑛 ) ∈ ( 0 [,] 1 ) ) |
| 171 | iirev | ⊢ ( ( 1 / 𝑛 ) ∈ ( 0 [,] 1 ) → ( 1 − ( 1 / 𝑛 ) ) ∈ ( 0 [,] 1 ) ) | |
| 172 | 170 171 | syl | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → ( 1 − ( 1 / 𝑛 ) ) ∈ ( 0 [,] 1 ) ) |
| 173 | 172 | fmpttd | ⊢ ( ⊤ → ( 𝑛 ∈ ℕ ↦ ( 1 − ( 1 / 𝑛 ) ) ) : ℕ ⟶ ( 0 [,] 1 ) ) |
| 174 | 1cnd | ⊢ ( ⊤ → 1 ∈ ℂ ) | |
| 175 | nnex | ⊢ ℕ ∈ V | |
| 176 | 175 | mptex | ⊢ ( 𝑛 ∈ ℕ ↦ ( 1 − ( 1 / 𝑛 ) ) ) ∈ V |
| 177 | 176 | a1i | ⊢ ( ⊤ → ( 𝑛 ∈ ℕ ↦ ( 1 − ( 1 / 𝑛 ) ) ) ∈ V ) |
| 178 | 90 | recnd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 179 | 83 | oveq2d | ⊢ ( 𝑛 = 𝑘 → ( 1 − ( 1 / 𝑛 ) ) = ( 1 − ( 1 / 𝑘 ) ) ) |
| 180 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( 1 − ( 1 / 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 1 − ( 1 / 𝑛 ) ) ) | |
| 181 | ovex | ⊢ ( 1 − ( 1 / 𝑘 ) ) ∈ V | |
| 182 | 179 180 181 | fvmpt | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 1 − ( 1 / 𝑛 ) ) ) ‘ 𝑘 ) = ( 1 − ( 1 / 𝑘 ) ) ) |
| 183 | 86 | oveq2d | ⊢ ( 𝑘 ∈ ℕ → ( 1 − ( ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ‘ 𝑘 ) ) = ( 1 − ( 1 / 𝑘 ) ) ) |
| 184 | 182 183 | eqtr4d | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 1 − ( 1 / 𝑛 ) ) ) ‘ 𝑘 ) = ( 1 − ( ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ‘ 𝑘 ) ) ) |
| 185 | 184 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 1 − ( 1 / 𝑛 ) ) ) ‘ 𝑘 ) = ( 1 − ( ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ‘ 𝑘 ) ) ) |
| 186 | 75 76 79 174 177 178 185 | climsubc2 | ⊢ ( ⊤ → ( 𝑛 ∈ ℕ ↦ ( 1 − ( 1 / 𝑛 ) ) ) ⇝ ( 1 − 0 ) ) |
| 187 | 1m0e1 | ⊢ ( 1 − 0 ) = 1 | |
| 188 | 186 187 | breqtrdi | ⊢ ( ⊤ → ( 𝑛 ∈ ℕ ↦ ( 1 − ( 1 / 𝑛 ) ) ) ⇝ 1 ) |
| 189 | 1elunit | ⊢ 1 ∈ ( 0 [,] 1 ) | |
| 190 | 189 | a1i | ⊢ ( ⊤ → 1 ∈ ( 0 [,] 1 ) ) |
| 191 | 75 76 150 173 188 190 | climcncf | ⊢ ( ⊤ → ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ Σ 𝑗 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) · ( 𝑥 ↑ 𝑗 ) ) ) ∘ ( 𝑛 ∈ ℕ ↦ ( 1 − ( 1 / 𝑛 ) ) ) ) ⇝ ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ Σ 𝑗 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) · ( 𝑥 ↑ 𝑗 ) ) ) ‘ 1 ) ) |
| 192 | eqidd | ⊢ ( ⊤ → ( 𝑛 ∈ ℕ ↦ ( 1 − ( 1 / 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 1 − ( 1 / 𝑛 ) ) ) ) | |
| 193 | eqidd | ⊢ ( ⊤ → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ Σ 𝑗 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) · ( 𝑥 ↑ 𝑗 ) ) ) = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ Σ 𝑗 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) · ( 𝑥 ↑ 𝑗 ) ) ) ) | |
| 194 | oveq1 | ⊢ ( 𝑥 = ( 1 − ( 1 / 𝑛 ) ) → ( 𝑥 ↑ 𝑗 ) = ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑗 ) ) | |
| 195 | 194 | oveq2d | ⊢ ( 𝑥 = ( 1 − ( 1 / 𝑛 ) ) → ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) · ( 𝑥 ↑ 𝑗 ) ) = ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) · ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑗 ) ) ) |
| 196 | 195 | sumeq2sdv | ⊢ ( 𝑥 = ( 1 − ( 1 / 𝑛 ) ) → Σ 𝑗 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) · ( 𝑥 ↑ 𝑗 ) ) = Σ 𝑗 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) · ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑗 ) ) ) |
| 197 | 172 192 193 196 | fmptco | ⊢ ( ⊤ → ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ Σ 𝑗 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) · ( 𝑥 ↑ 𝑗 ) ) ) ∘ ( 𝑛 ∈ ℕ ↦ ( 1 − ( 1 / 𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ Σ 𝑗 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) · ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑗 ) ) ) ) |
| 198 | 0zd | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → 0 ∈ ℤ ) | |
| 199 | 9 | adantll | ⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘 ) ) → ( ( 𝑘 − 1 ) / 2 ) ∈ ℕ0 ) |
| 200 | 7 199 10 | sylancr | ⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘 ) ) → ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) ∈ ℝ ) |
| 201 | 200 | recnd | ⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) ∧ ( ¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘 ) ) → ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) ∈ ℂ ) |
| 202 | 201 | adantllr | ⊢ ( ( ( ( ⊤ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( ¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘 ) ) → ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) ∈ ℂ ) |
| 203 | 1re | ⊢ 1 ∈ ℝ | |
| 204 | resubcl | ⊢ ( ( 1 ∈ ℝ ∧ ( 1 / 𝑛 ) ∈ ℝ ) → ( 1 − ( 1 / 𝑛 ) ) ∈ ℝ ) | |
| 205 | 203 154 204 | sylancr | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → ( 1 − ( 1 / 𝑛 ) ) ∈ ℝ ) |
| 206 | 205 | ad2antrr | ⊢ ( ( ( ( ⊤ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( ¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘 ) ) → ( 1 − ( 1 / 𝑛 ) ) ∈ ℝ ) |
| 207 | simplr | ⊢ ( ( ( ( ⊤ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( ¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘 ) ) → 𝑘 ∈ ℕ0 ) | |
| 208 | 206 207 | reexpcld | ⊢ ( ( ( ( ⊤ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( ¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘 ) ) → ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) ∈ ℝ ) |
| 209 | 208 | recnd | ⊢ ( ( ( ( ⊤ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( ¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘 ) ) → ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) ∈ ℂ ) |
| 210 | nn0cn | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) | |
| 211 | 210 | ad2antlr | ⊢ ( ( ( ( ⊤ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( ¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘 ) ) → 𝑘 ∈ ℂ ) |
| 212 | 12 | adantll | ⊢ ( ( ( ( ⊤ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( ¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘 ) ) → 𝑘 ∈ ℕ ) |
| 213 | 212 | nnne0d | ⊢ ( ( ( ( ⊤ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( ¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘 ) ) → 𝑘 ≠ 0 ) |
| 214 | 202 209 211 213 | div12d | ⊢ ( ( ( ( ⊤ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( ¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘 ) ) → ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) = ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) · ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) |
| 215 | 14 | adantll | ⊢ ( ( ( ( ⊤ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( ¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘 ) ) → ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ∈ ℂ ) |
| 216 | 209 215 | mulcomd | ⊢ ( ( ( ( ⊤ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( ¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘 ) ) → ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) · ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) = ( ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) · ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) ) ) |
| 217 | 214 216 | eqtrd | ⊢ ( ( ( ( ⊤ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( ¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘 ) ) → ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) = ( ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) · ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) ) ) |
| 218 | 6 217 | sylan2b | ⊢ ( ( ( ( ⊤ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) ) → ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) = ( ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) · ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) ) ) |
| 219 | 218 | ifeq2da | ⊢ ( ( ( ⊤ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) → if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) = if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) · ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) ) ) ) |
| 220 | 205 | recnd | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → ( 1 − ( 1 / 𝑛 ) ) ∈ ℂ ) |
| 221 | expcl | ⊢ ( ( ( 1 − ( 1 / 𝑛 ) ) ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) ∈ ℂ ) | |
| 222 | 220 221 | sylan | ⊢ ( ( ( ⊤ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) ∈ ℂ ) |
| 223 | 222 | mul02d | ⊢ ( ( ( ⊤ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) → ( 0 · ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) ) = 0 ) |
| 224 | 223 | ifeq1d | ⊢ ( ( ( ⊤ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) → if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , ( 0 · ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) ) , ( ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) · ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) ) ) = if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) · ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) ) ) ) |
| 225 | 219 224 | eqtr4d | ⊢ ( ( ( ⊤ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) → if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) = if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , ( 0 · ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) ) , ( ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) · ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) ) ) ) |
| 226 | ovif | ⊢ ( if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) · ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) ) = if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , ( 0 · ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) ) , ( ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) · ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) ) ) | |
| 227 | 225 226 | eqtr4di | ⊢ ( ( ( ⊤ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) → if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) = ( if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) · ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) ) ) |
| 228 | simpr | ⊢ ( ( ( ⊤ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) | |
| 229 | c0ex | ⊢ 0 ∈ V | |
| 230 | ovex | ⊢ ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ∈ V | |
| 231 | 229 230 | ifex | ⊢ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ∈ V |
| 232 | eqid | ⊢ ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) | |
| 233 | 232 | fvmpt2 | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ∈ V ) → ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑘 ) = if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) |
| 234 | 228 231 233 | sylancl | ⊢ ( ( ( ⊤ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑘 ) = if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) |
| 235 | ovex | ⊢ ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ∈ V | |
| 236 | 229 235 | ifex | ⊢ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ∈ V |
| 237 | 141 | fvmpt2 | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ∈ V ) → ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑘 ) = if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) |
| 238 | 228 236 237 | sylancl | ⊢ ( ( ( ⊤ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑘 ) = if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) |
| 239 | 238 | oveq1d | ⊢ ( ( ( ⊤ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑘 ) · ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) ) = ( if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) · ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) ) ) |
| 240 | 227 234 239 | 3eqtr4d | ⊢ ( ( ( ⊤ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑘 ) = ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑘 ) · ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) ) ) |
| 241 | 240 | ralrimiva | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → ∀ 𝑘 ∈ ℕ0 ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑘 ) = ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑘 ) · ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) ) ) |
| 242 | nfv | ⊢ Ⅎ 𝑗 ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑘 ) = ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑘 ) · ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) ) | |
| 243 | nffvmpt1 | ⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑗 ) | |
| 244 | nffvmpt1 | ⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) | |
| 245 | nfcv | ⊢ Ⅎ 𝑘 · | |
| 246 | nfcv | ⊢ Ⅎ 𝑘 ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑗 ) | |
| 247 | 244 245 246 | nfov | ⊢ Ⅎ 𝑘 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) · ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑗 ) ) |
| 248 | 243 247 | nfeq | ⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑗 ) = ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) · ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑗 ) ) |
| 249 | fveq2 | ⊢ ( 𝑘 = 𝑗 → ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑘 ) = ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑗 ) ) | |
| 250 | fveq2 | ⊢ ( 𝑘 = 𝑗 → ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑘 ) = ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) ) | |
| 251 | oveq2 | ⊢ ( 𝑘 = 𝑗 → ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) = ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑗 ) ) | |
| 252 | 250 251 | oveq12d | ⊢ ( 𝑘 = 𝑗 → ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑘 ) · ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) ) = ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) · ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑗 ) ) ) |
| 253 | 249 252 | eqeq12d | ⊢ ( 𝑘 = 𝑗 → ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑘 ) = ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑘 ) · ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) ) ↔ ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑗 ) = ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) · ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑗 ) ) ) ) |
| 254 | 242 248 253 | cbvralw | ⊢ ( ∀ 𝑘 ∈ ℕ0 ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑘 ) = ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑘 ) · ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) ) ↔ ∀ 𝑗 ∈ ℕ0 ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑗 ) = ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) · ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑗 ) ) ) |
| 255 | 241 254 | sylib | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → ∀ 𝑗 ∈ ℕ0 ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑗 ) = ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) · ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑗 ) ) ) |
| 256 | 255 | r19.21bi | ⊢ ( ( ( ⊤ ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑗 ) = ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) · ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑗 ) ) ) |
| 257 | 0cnd | ⊢ ( ( ( ( ⊤ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) ) → 0 ∈ ℂ ) | |
| 258 | 208 212 | nndivred | ⊢ ( ( ( ( ⊤ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( ¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘 ) ) → ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ∈ ℝ ) |
| 259 | 258 | recnd | ⊢ ( ( ( ( ⊤ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( ¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘 ) ) → ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ∈ ℂ ) |
| 260 | 202 259 | mulcld | ⊢ ( ( ( ( ⊤ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( ¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘 ) ) → ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ∈ ℂ ) |
| 261 | 6 260 | sylan2b | ⊢ ( ( ( ( ⊤ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) ) → ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ∈ ℂ ) |
| 262 | 257 261 | ifclda | ⊢ ( ( ( ⊤ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) → if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ∈ ℂ ) |
| 263 | 262 | fmpttd | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) : ℕ0 ⟶ ℂ ) |
| 264 | 263 | ffvelcdmda | ⊢ ( ( ( ⊤ ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑗 ) ∈ ℂ ) |
| 265 | 256 264 | eqeltrrd | ⊢ ( ( ( ⊤ ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ℕ0 ) → ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) · ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑗 ) ) ∈ ℂ ) |
| 266 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 267 | 266 | a1i | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → 0 ∈ ℕ0 ) |
| 268 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
| 269 | seqeq1 | ⊢ ( ( 0 + 1 ) = 1 → seq ( 0 + 1 ) ( + , ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ) = seq 1 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ) ) | |
| 270 | 268 269 | ax-mp | ⊢ seq ( 0 + 1 ) ( + , ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ) = seq 1 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ) |
| 271 | 1zzd | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → 1 ∈ ℤ ) | |
| 272 | elnnuz | ⊢ ( 𝑗 ∈ ℕ ↔ 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 273 | nnne0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ≠ 0 ) | |
| 274 | 273 | neneqd | ⊢ ( 𝑘 ∈ ℕ → ¬ 𝑘 = 0 ) |
| 275 | biorf | ⊢ ( ¬ 𝑘 = 0 → ( 2 ∥ 𝑘 ↔ ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) ) ) | |
| 276 | 274 275 | syl | ⊢ ( 𝑘 ∈ ℕ → ( 2 ∥ 𝑘 ↔ ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) ) ) |
| 277 | 276 | bicomd | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) ↔ 2 ∥ 𝑘 ) ) |
| 278 | 277 | ifbid | ⊢ ( 𝑘 ∈ ℕ → if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) = if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) |
| 279 | 91 231 233 | sylancl | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑘 ) = if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) |
| 280 | 229 230 | ifex | ⊢ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ∈ V |
| 281 | eqid | ⊢ ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) = ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) | |
| 282 | 281 | fvmpt2 | ⊢ ( ( 𝑘 ∈ ℕ ∧ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ∈ V ) → ( ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑘 ) = if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) |
| 283 | 280 282 | mpan2 | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑘 ) = if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) |
| 284 | 278 279 283 | 3eqtr4d | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑘 ) = ( ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑘 ) ) |
| 285 | 284 | rgen | ⊢ ∀ 𝑘 ∈ ℕ ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑘 ) = ( ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑘 ) |
| 286 | 285 | a1i | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → ∀ 𝑘 ∈ ℕ ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑘 ) = ( ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑘 ) ) |
| 287 | nfv | ⊢ Ⅎ 𝑗 ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑘 ) = ( ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑘 ) | |
| 288 | nffvmpt1 | ⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑗 ) | |
| 289 | 243 288 | nfeq | ⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑗 ) = ( ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑗 ) |
| 290 | fveq2 | ⊢ ( 𝑘 = 𝑗 → ( ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑘 ) = ( ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑗 ) ) | |
| 291 | 249 290 | eqeq12d | ⊢ ( 𝑘 = 𝑗 → ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑘 ) = ( ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑘 ) ↔ ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑗 ) = ( ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑗 ) ) ) |
| 292 | 287 289 291 | cbvralw | ⊢ ( ∀ 𝑘 ∈ ℕ ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑘 ) = ( ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑘 ) ↔ ∀ 𝑗 ∈ ℕ ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑗 ) = ( ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑗 ) ) |
| 293 | 286 292 | sylib | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → ∀ 𝑗 ∈ ℕ ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑗 ) = ( ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑗 ) ) |
| 294 | 293 | r19.21bi | ⊢ ( ( ( ⊤ ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑗 ) = ( ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑗 ) ) |
| 295 | 272 294 | sylan2br | ⊢ ( ( ( ⊤ ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) → ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑗 ) = ( ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 𝑗 ) ) |
| 296 | 271 295 | seqfeq | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → seq 1 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ) = seq 1 ( + , ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ) ) |
| 297 | 154 163 168 | abssubge0d | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → ( abs ‘ ( 1 − ( 1 / 𝑛 ) ) ) = ( 1 − ( 1 / 𝑛 ) ) ) |
| 298 | ltsubrp | ⊢ ( ( 1 ∈ ℝ ∧ ( 1 / 𝑛 ) ∈ ℝ+ ) → ( 1 − ( 1 / 𝑛 ) ) < 1 ) | |
| 299 | 203 153 298 | sylancr | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → ( 1 − ( 1 / 𝑛 ) ) < 1 ) |
| 300 | 297 299 | eqbrtrd | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → ( abs ‘ ( 1 − ( 1 / 𝑛 ) ) ) < 1 ) |
| 301 | 281 | atantayl2 | ⊢ ( ( ( 1 − ( 1 / 𝑛 ) ) ∈ ℂ ∧ ( abs ‘ ( 1 − ( 1 / 𝑛 ) ) ) < 1 ) → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ) ⇝ ( arctan ‘ ( 1 − ( 1 / 𝑛 ) ) ) ) |
| 302 | 220 300 301 | syl2anc | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ) ⇝ ( arctan ‘ ( 1 − ( 1 / 𝑛 ) ) ) ) |
| 303 | 296 302 | eqbrtrd | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → seq 1 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ) ⇝ ( arctan ‘ ( 1 − ( 1 / 𝑛 ) ) ) ) |
| 304 | 270 303 | eqbrtrid | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → seq ( 0 + 1 ) ( + , ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ) ⇝ ( arctan ‘ ( 1 − ( 1 / 𝑛 ) ) ) ) |
| 305 | 2 267 264 304 | clim2ser2 | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ) ⇝ ( ( arctan ‘ ( 1 − ( 1 / 𝑛 ) ) ) + ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ) ‘ 0 ) ) ) |
| 306 | 0z | ⊢ 0 ∈ ℤ | |
| 307 | seq1 | ⊢ ( 0 ∈ ℤ → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ) ‘ 0 ) = ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 0 ) ) | |
| 308 | 306 307 | ax-mp | ⊢ ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ) ‘ 0 ) = ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 0 ) |
| 309 | iftrue | ⊢ ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) → if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) = 0 ) | |
| 310 | 309 | orcs | ⊢ ( 𝑘 = 0 → if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) = 0 ) |
| 311 | 310 232 229 | fvmpt | ⊢ ( 0 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 0 ) = 0 ) |
| 312 | 266 311 | ax-mp | ⊢ ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ‘ 0 ) = 0 |
| 313 | 308 312 | eqtri | ⊢ ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ) ‘ 0 ) = 0 |
| 314 | 313 | oveq2i | ⊢ ( ( arctan ‘ ( 1 − ( 1 / 𝑛 ) ) ) + ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ) ‘ 0 ) ) = ( ( arctan ‘ ( 1 − ( 1 / 𝑛 ) ) ) + 0 ) |
| 315 | atanrecl | ⊢ ( ( 1 − ( 1 / 𝑛 ) ) ∈ ℝ → ( arctan ‘ ( 1 − ( 1 / 𝑛 ) ) ) ∈ ℝ ) | |
| 316 | 205 315 | syl | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → ( arctan ‘ ( 1 − ( 1 / 𝑛 ) ) ) ∈ ℝ ) |
| 317 | 316 | recnd | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → ( arctan ‘ ( 1 − ( 1 / 𝑛 ) ) ) ∈ ℂ ) |
| 318 | 317 | addridd | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → ( ( arctan ‘ ( 1 − ( 1 / 𝑛 ) ) ) + 0 ) = ( arctan ‘ ( 1 − ( 1 / 𝑛 ) ) ) ) |
| 319 | 314 318 | eqtrid | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → ( ( arctan ‘ ( 1 − ( 1 / 𝑛 ) ) ) + ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ) ‘ 0 ) ) = ( arctan ‘ ( 1 − ( 1 / 𝑛 ) ) ) ) |
| 320 | 305 319 | breqtrd | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑘 ) / 𝑘 ) ) ) ) ) ⇝ ( arctan ‘ ( 1 − ( 1 / 𝑛 ) ) ) ) |
| 321 | 2 198 256 265 320 | isumclim | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → Σ 𝑗 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) · ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑗 ) ) = ( arctan ‘ ( 1 − ( 1 / 𝑛 ) ) ) ) |
| 322 | 321 | mpteq2dva | ⊢ ( ⊤ → ( 𝑛 ∈ ℕ ↦ Σ 𝑗 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) · ( ( 1 − ( 1 / 𝑛 ) ) ↑ 𝑗 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( arctan ‘ ( 1 − ( 1 / 𝑛 ) ) ) ) ) |
| 323 | 197 322 | eqtrd | ⊢ ( ⊤ → ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ Σ 𝑗 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) · ( 𝑥 ↑ 𝑗 ) ) ) ∘ ( 𝑛 ∈ ℕ ↦ ( 1 − ( 1 / 𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( arctan ‘ ( 1 − ( 1 / 𝑛 ) ) ) ) ) |
| 324 | oveq1 | ⊢ ( 𝑥 = 1 → ( 𝑥 ↑ 𝑗 ) = ( 1 ↑ 𝑗 ) ) | |
| 325 | nn0z | ⊢ ( 𝑗 ∈ ℕ0 → 𝑗 ∈ ℤ ) | |
| 326 | 1exp | ⊢ ( 𝑗 ∈ ℤ → ( 1 ↑ 𝑗 ) = 1 ) | |
| 327 | 325 326 | syl | ⊢ ( 𝑗 ∈ ℕ0 → ( 1 ↑ 𝑗 ) = 1 ) |
| 328 | 324 327 | sylan9eq | ⊢ ( ( 𝑥 = 1 ∧ 𝑗 ∈ ℕ0 ) → ( 𝑥 ↑ 𝑗 ) = 1 ) |
| 329 | 328 | oveq2d | ⊢ ( ( 𝑥 = 1 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) · ( 𝑥 ↑ 𝑗 ) ) = ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) · 1 ) ) |
| 330 | 18 | mptru | ⊢ ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) : ℕ0 ⟶ ℂ |
| 331 | 330 | ffvelcdmi | ⊢ ( 𝑗 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) ∈ ℂ ) |
| 332 | 331 | mulridd | ⊢ ( 𝑗 ∈ ℕ0 → ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) · 1 ) = ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) ) |
| 333 | 332 | adantl | ⊢ ( ( 𝑥 = 1 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) · 1 ) = ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) ) |
| 334 | 329 333 | eqtrd | ⊢ ( ( 𝑥 = 1 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) · ( 𝑥 ↑ 𝑗 ) ) = ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) ) |
| 335 | 334 | sumeq2dv | ⊢ ( 𝑥 = 1 → Σ 𝑗 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) · ( 𝑥 ↑ 𝑗 ) ) = Σ 𝑗 ∈ ℕ0 ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) ) |
| 336 | sumex | ⊢ Σ 𝑗 ∈ ℕ0 ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) ∈ V | |
| 337 | 335 149 336 | fvmpt | ⊢ ( 1 ∈ ( 0 [,] 1 ) → ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ Σ 𝑗 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) · ( 𝑥 ↑ 𝑗 ) ) ) ‘ 1 ) = Σ 𝑗 ∈ ℕ0 ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) ) |
| 338 | 189 337 | mp1i | ⊢ ( ⊤ → ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ Σ 𝑗 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) · ( 𝑥 ↑ 𝑗 ) ) ) ‘ 1 ) = Σ 𝑗 ∈ ℕ0 ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) ) |
| 339 | 191 323 338 | 3brtr3d | ⊢ ( ⊤ → ( 𝑛 ∈ ℕ ↦ ( arctan ‘ ( 1 − ( 1 / 𝑛 ) ) ) ) ⇝ Σ 𝑗 ∈ ℕ0 ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) ) |
| 340 | eqid | ⊢ ( ℂ ∖ ( -∞ (,] 0 ) ) = ( ℂ ∖ ( -∞ (,] 0 ) ) | |
| 341 | eqid | ⊢ { 𝑥 ∈ ℂ ∣ ( 1 + ( 𝑥 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) } = { 𝑥 ∈ ℂ ∣ ( 1 + ( 𝑥 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) } | |
| 342 | 340 341 | atancn | ⊢ ( arctan ↾ { 𝑥 ∈ ℂ ∣ ( 1 + ( 𝑥 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) } ) ∈ ( { 𝑥 ∈ ℂ ∣ ( 1 + ( 𝑥 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) } –cn→ ℂ ) |
| 343 | 342 | a1i | ⊢ ( ⊤ → ( arctan ↾ { 𝑥 ∈ ℂ ∣ ( 1 + ( 𝑥 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) } ) ∈ ( { 𝑥 ∈ ℂ ∣ ( 1 + ( 𝑥 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) } –cn→ ℂ ) ) |
| 344 | unitssre | ⊢ ( 0 [,] 1 ) ⊆ ℝ | |
| 345 | 340 341 | ressatans | ⊢ ℝ ⊆ { 𝑥 ∈ ℂ ∣ ( 1 + ( 𝑥 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) } |
| 346 | 344 345 | sstri | ⊢ ( 0 [,] 1 ) ⊆ { 𝑥 ∈ ℂ ∣ ( 1 + ( 𝑥 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) } |
| 347 | fss | ⊢ ( ( ( 𝑛 ∈ ℕ ↦ ( 1 − ( 1 / 𝑛 ) ) ) : ℕ ⟶ ( 0 [,] 1 ) ∧ ( 0 [,] 1 ) ⊆ { 𝑥 ∈ ℂ ∣ ( 1 + ( 𝑥 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) } ) → ( 𝑛 ∈ ℕ ↦ ( 1 − ( 1 / 𝑛 ) ) ) : ℕ ⟶ { 𝑥 ∈ ℂ ∣ ( 1 + ( 𝑥 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) } ) | |
| 348 | 173 346 347 | sylancl | ⊢ ( ⊤ → ( 𝑛 ∈ ℕ ↦ ( 1 − ( 1 / 𝑛 ) ) ) : ℕ ⟶ { 𝑥 ∈ ℂ ∣ ( 1 + ( 𝑥 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) } ) |
| 349 | 345 203 | sselii | ⊢ 1 ∈ { 𝑥 ∈ ℂ ∣ ( 1 + ( 𝑥 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) } |
| 350 | 349 | a1i | ⊢ ( ⊤ → 1 ∈ { 𝑥 ∈ ℂ ∣ ( 1 + ( 𝑥 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) } ) |
| 351 | 75 76 343 348 188 350 | climcncf | ⊢ ( ⊤ → ( ( arctan ↾ { 𝑥 ∈ ℂ ∣ ( 1 + ( 𝑥 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) } ) ∘ ( 𝑛 ∈ ℕ ↦ ( 1 − ( 1 / 𝑛 ) ) ) ) ⇝ ( ( arctan ↾ { 𝑥 ∈ ℂ ∣ ( 1 + ( 𝑥 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) } ) ‘ 1 ) ) |
| 352 | 346 172 | sselid | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → ( 1 − ( 1 / 𝑛 ) ) ∈ { 𝑥 ∈ ℂ ∣ ( 1 + ( 𝑥 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) } ) |
| 353 | cncff | ⊢ ( ( arctan ↾ { 𝑥 ∈ ℂ ∣ ( 1 + ( 𝑥 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) } ) ∈ ( { 𝑥 ∈ ℂ ∣ ( 1 + ( 𝑥 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) } –cn→ ℂ ) → ( arctan ↾ { 𝑥 ∈ ℂ ∣ ( 1 + ( 𝑥 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) } ) : { 𝑥 ∈ ℂ ∣ ( 1 + ( 𝑥 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) } ⟶ ℂ ) | |
| 354 | 342 353 | mp1i | ⊢ ( ⊤ → ( arctan ↾ { 𝑥 ∈ ℂ ∣ ( 1 + ( 𝑥 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) } ) : { 𝑥 ∈ ℂ ∣ ( 1 + ( 𝑥 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) } ⟶ ℂ ) |
| 355 | 354 | feqmptd | ⊢ ( ⊤ → ( arctan ↾ { 𝑥 ∈ ℂ ∣ ( 1 + ( 𝑥 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) } ) = ( 𝑘 ∈ { 𝑥 ∈ ℂ ∣ ( 1 + ( 𝑥 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) } ↦ ( ( arctan ↾ { 𝑥 ∈ ℂ ∣ ( 1 + ( 𝑥 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) } ) ‘ 𝑘 ) ) ) |
| 356 | fvres | ⊢ ( 𝑘 ∈ { 𝑥 ∈ ℂ ∣ ( 1 + ( 𝑥 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) } → ( ( arctan ↾ { 𝑥 ∈ ℂ ∣ ( 1 + ( 𝑥 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) } ) ‘ 𝑘 ) = ( arctan ‘ 𝑘 ) ) | |
| 357 | 356 | mpteq2ia | ⊢ ( 𝑘 ∈ { 𝑥 ∈ ℂ ∣ ( 1 + ( 𝑥 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) } ↦ ( ( arctan ↾ { 𝑥 ∈ ℂ ∣ ( 1 + ( 𝑥 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) } ) ‘ 𝑘 ) ) = ( 𝑘 ∈ { 𝑥 ∈ ℂ ∣ ( 1 + ( 𝑥 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) } ↦ ( arctan ‘ 𝑘 ) ) |
| 358 | 355 357 | eqtrdi | ⊢ ( ⊤ → ( arctan ↾ { 𝑥 ∈ ℂ ∣ ( 1 + ( 𝑥 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) } ) = ( 𝑘 ∈ { 𝑥 ∈ ℂ ∣ ( 1 + ( 𝑥 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) } ↦ ( arctan ‘ 𝑘 ) ) ) |
| 359 | fveq2 | ⊢ ( 𝑘 = ( 1 − ( 1 / 𝑛 ) ) → ( arctan ‘ 𝑘 ) = ( arctan ‘ ( 1 − ( 1 / 𝑛 ) ) ) ) | |
| 360 | 352 192 358 359 | fmptco | ⊢ ( ⊤ → ( ( arctan ↾ { 𝑥 ∈ ℂ ∣ ( 1 + ( 𝑥 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) } ) ∘ ( 𝑛 ∈ ℕ ↦ ( 1 − ( 1 / 𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( arctan ‘ ( 1 − ( 1 / 𝑛 ) ) ) ) ) |
| 361 | fvres | ⊢ ( 1 ∈ { 𝑥 ∈ ℂ ∣ ( 1 + ( 𝑥 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) } → ( ( arctan ↾ { 𝑥 ∈ ℂ ∣ ( 1 + ( 𝑥 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) } ) ‘ 1 ) = ( arctan ‘ 1 ) ) | |
| 362 | 349 361 | mp1i | ⊢ ( ⊤ → ( ( arctan ↾ { 𝑥 ∈ ℂ ∣ ( 1 + ( 𝑥 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) } ) ‘ 1 ) = ( arctan ‘ 1 ) ) |
| 363 | atan1 | ⊢ ( arctan ‘ 1 ) = ( π / 4 ) | |
| 364 | 362 363 | eqtrdi | ⊢ ( ⊤ → ( ( arctan ↾ { 𝑥 ∈ ℂ ∣ ( 1 + ( 𝑥 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) } ) ‘ 1 ) = ( π / 4 ) ) |
| 365 | 351 360 364 | 3brtr3d | ⊢ ( ⊤ → ( 𝑛 ∈ ℕ ↦ ( arctan ‘ ( 1 − ( 1 / 𝑛 ) ) ) ) ⇝ ( π / 4 ) ) |
| 366 | climuni | ⊢ ( ( ( 𝑛 ∈ ℕ ↦ ( arctan ‘ ( 1 − ( 1 / 𝑛 ) ) ) ) ⇝ Σ 𝑗 ∈ ℕ0 ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) ∧ ( 𝑛 ∈ ℕ ↦ ( arctan ‘ ( 1 − ( 1 / 𝑛 ) ) ) ) ⇝ ( π / 4 ) ) → Σ 𝑗 ∈ ℕ0 ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) = ( π / 4 ) ) | |
| 367 | 339 365 366 | syl2anc | ⊢ ( ⊤ → Σ 𝑗 ∈ ℕ0 ( ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑗 ) = ( π / 4 ) ) |
| 368 | 148 367 | breqtrd | ⊢ ( ⊤ → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ) ⇝ ( π / 4 ) ) |
| 369 | 368 | mptru | ⊢ seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ) ⇝ ( π / 4 ) |
| 370 | ovex | ⊢ ( π / 4 ) ∈ V | |
| 371 | 1 141 370 | leibpilem2 | ⊢ ( seq 0 ( + , 𝐹 ) ⇝ ( π / 4 ) ↔ seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ) ⇝ ( π / 4 ) ) |
| 372 | 369 371 | mpbir | ⊢ seq 0 ( + , 𝐹 ) ⇝ ( π / 4 ) |