This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse the unit interval. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iirev | |- ( X e. ( 0 [,] 1 ) -> ( 1 - X ) e. ( 0 [,] 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re | |- 1 e. RR |
|
| 2 | resubcl | |- ( ( 1 e. RR /\ X e. RR ) -> ( 1 - X ) e. RR ) |
|
| 3 | 1 2 | mpan | |- ( X e. RR -> ( 1 - X ) e. RR ) |
| 4 | 3 | 3ad2ant1 | |- ( ( X e. RR /\ 0 <_ X /\ X <_ 1 ) -> ( 1 - X ) e. RR ) |
| 5 | simp3 | |- ( ( X e. RR /\ 0 <_ X /\ X <_ 1 ) -> X <_ 1 ) |
|
| 6 | simp1 | |- ( ( X e. RR /\ 0 <_ X /\ X <_ 1 ) -> X e. RR ) |
|
| 7 | subge0 | |- ( ( 1 e. RR /\ X e. RR ) -> ( 0 <_ ( 1 - X ) <-> X <_ 1 ) ) |
|
| 8 | 1 6 7 | sylancr | |- ( ( X e. RR /\ 0 <_ X /\ X <_ 1 ) -> ( 0 <_ ( 1 - X ) <-> X <_ 1 ) ) |
| 9 | 5 8 | mpbird | |- ( ( X e. RR /\ 0 <_ X /\ X <_ 1 ) -> 0 <_ ( 1 - X ) ) |
| 10 | simp2 | |- ( ( X e. RR /\ 0 <_ X /\ X <_ 1 ) -> 0 <_ X ) |
|
| 11 | subge02 | |- ( ( 1 e. RR /\ X e. RR ) -> ( 0 <_ X <-> ( 1 - X ) <_ 1 ) ) |
|
| 12 | 1 6 11 | sylancr | |- ( ( X e. RR /\ 0 <_ X /\ X <_ 1 ) -> ( 0 <_ X <-> ( 1 - X ) <_ 1 ) ) |
| 13 | 10 12 | mpbid | |- ( ( X e. RR /\ 0 <_ X /\ X <_ 1 ) -> ( 1 - X ) <_ 1 ) |
| 14 | 4 9 13 | 3jca | |- ( ( X e. RR /\ 0 <_ X /\ X <_ 1 ) -> ( ( 1 - X ) e. RR /\ 0 <_ ( 1 - X ) /\ ( 1 - X ) <_ 1 ) ) |
| 15 | elicc01 | |- ( X e. ( 0 [,] 1 ) <-> ( X e. RR /\ 0 <_ X /\ X <_ 1 ) ) |
|
| 16 | elicc01 | |- ( ( 1 - X ) e. ( 0 [,] 1 ) <-> ( ( 1 - X ) e. RR /\ 0 <_ ( 1 - X ) /\ ( 1 - X ) <_ 1 ) ) |
|
| 17 | 14 15 16 | 3imtr4i | |- ( X e. ( 0 [,] 1 ) -> ( 1 - X ) e. ( 0 [,] 1 ) ) |