This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reciprocal of both sides of 'less than or equal to'. (Contributed by NM, 3-Oct-1999) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lerec | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( A <_ B <-> ( 1 / B ) <_ ( 1 / A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrec | |- ( ( ( B e. RR /\ 0 < B ) /\ ( A e. RR /\ 0 < A ) ) -> ( B < A <-> ( 1 / A ) < ( 1 / B ) ) ) |
|
| 2 | 1 | ancoms | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( B < A <-> ( 1 / A ) < ( 1 / B ) ) ) |
| 3 | 2 | notbid | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( -. B < A <-> -. ( 1 / A ) < ( 1 / B ) ) ) |
| 4 | simpll | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> A e. RR ) |
|
| 5 | simprl | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> B e. RR ) |
|
| 6 | 4 5 | lenltd | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( A <_ B <-> -. B < A ) ) |
| 7 | simprr | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> 0 < B ) |
|
| 8 | 7 | gt0ne0d | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> B =/= 0 ) |
| 9 | 5 8 | rereccld | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( 1 / B ) e. RR ) |
| 10 | simplr | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> 0 < A ) |
|
| 11 | 10 | gt0ne0d | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> A =/= 0 ) |
| 12 | 4 11 | rereccld | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( 1 / A ) e. RR ) |
| 13 | 9 12 | lenltd | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( ( 1 / B ) <_ ( 1 / A ) <-> -. ( 1 / A ) < ( 1 / B ) ) ) |
| 14 | 3 6 13 | 3bitr4d | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( A <_ B <-> ( 1 / B ) <_ ( 1 / A ) ) ) |