This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 2-Oct-1999) (Proof shortened by Mario Carneiro, 31-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | climuni | |- ( ( F ~~> A /\ F ~~> B ) -> A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z | |- 1 e. ZZ |
|
| 2 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 3 | 1zzd | |- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> 1 e. ZZ ) |
|
| 4 | climcl | |- ( F ~~> A -> A e. CC ) |
|
| 5 | 4 | 3ad2ant1 | |- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> A e. CC ) |
| 6 | climcl | |- ( F ~~> B -> B e. CC ) |
|
| 7 | 6 | 3ad2ant2 | |- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> B e. CC ) |
| 8 | 5 7 | subcld | |- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> ( A - B ) e. CC ) |
| 9 | simp3 | |- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> A =/= B ) |
|
| 10 | 5 7 9 | subne0d | |- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> ( A - B ) =/= 0 ) |
| 11 | 8 10 | absrpcld | |- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> ( abs ` ( A - B ) ) e. RR+ ) |
| 12 | 11 | rphalfcld | |- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> ( ( abs ` ( A - B ) ) / 2 ) e. RR+ ) |
| 13 | eqidd | |- ( ( ( F ~~> A /\ F ~~> B /\ A =/= B ) /\ k e. NN ) -> ( F ` k ) = ( F ` k ) ) |
|
| 14 | simp1 | |- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> F ~~> A ) |
|
| 15 | 2 3 12 13 14 | climi | |- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) |
| 16 | simp2 | |- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> F ~~> B ) |
|
| 17 | 2 3 12 13 16 | climi | |- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) |
| 18 | 2 | rexanuz2 | |- ( E. j e. NN A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) <-> ( E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) ) |
| 19 | 15 17 18 | sylanbrc | |- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) ) |
| 20 | nnz | |- ( j e. NN -> j e. ZZ ) |
|
| 21 | uzid | |- ( j e. ZZ -> j e. ( ZZ>= ` j ) ) |
|
| 22 | ne0i | |- ( j e. ( ZZ>= ` j ) -> ( ZZ>= ` j ) =/= (/) ) |
|
| 23 | r19.2z | |- ( ( ( ZZ>= ` j ) =/= (/) /\ A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) ) -> E. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) ) |
|
| 24 | 23 | ex | |- ( ( ZZ>= ` j ) =/= (/) -> ( A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) -> E. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) ) ) |
| 25 | 20 21 22 24 | 4syl | |- ( j e. NN -> ( A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) -> E. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) ) ) |
| 26 | simpr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> ( F ` k ) e. CC ) |
|
| 27 | simpll | |- ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> A e. CC ) |
|
| 28 | 26 27 | abssubd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> ( abs ` ( ( F ` k ) - A ) ) = ( abs ` ( A - ( F ` k ) ) ) ) |
| 29 | 28 | breq1d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> ( ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) <-> ( abs ` ( A - ( F ` k ) ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) |
| 30 | simplr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> B e. CC ) |
|
| 31 | subcl | |- ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) |
|
| 32 | 31 | adantr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> ( A - B ) e. CC ) |
| 33 | 32 | abscld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> ( abs ` ( A - B ) ) e. RR ) |
| 34 | abs3lem | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( A - B ) ) e. RR ) ) -> ( ( ( abs ` ( A - ( F ` k ) ) ) < ( ( abs ` ( A - B ) ) / 2 ) /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) -> ( abs ` ( A - B ) ) < ( abs ` ( A - B ) ) ) ) |
|
| 35 | 27 30 26 33 34 | syl22anc | |- ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> ( ( ( abs ` ( A - ( F ` k ) ) ) < ( ( abs ` ( A - B ) ) / 2 ) /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) -> ( abs ` ( A - B ) ) < ( abs ` ( A - B ) ) ) ) |
| 36 | 33 | ltnrd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> -. ( abs ` ( A - B ) ) < ( abs ` ( A - B ) ) ) |
| 37 | 36 | pm2.21d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> ( ( abs ` ( A - B ) ) < ( abs ` ( A - B ) ) -> -. 1 e. ZZ ) ) |
| 38 | 35 37 | syld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> ( ( ( abs ` ( A - ( F ` k ) ) ) < ( ( abs ` ( A - B ) ) / 2 ) /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) -> -. 1 e. ZZ ) ) |
| 39 | 38 | expd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> ( ( abs ` ( A - ( F ` k ) ) ) < ( ( abs ` ( A - B ) ) / 2 ) -> ( ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) -> -. 1 e. ZZ ) ) ) |
| 40 | 29 39 | sylbid | |- ( ( ( A e. CC /\ B e. CC ) /\ ( F ` k ) e. CC ) -> ( ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) -> ( ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) -> -. 1 e. ZZ ) ) ) |
| 41 | 40 | impr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) -> ( ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) -> -. 1 e. ZZ ) ) |
| 42 | 41 | adantld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) -> ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) -> -. 1 e. ZZ ) ) |
| 43 | 42 | expimpd | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) -> -. 1 e. ZZ ) ) |
| 44 | 43 | rexlimdvw | |- ( ( A e. CC /\ B e. CC ) -> ( E. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) -> -. 1 e. ZZ ) ) |
| 45 | 25 44 | sylan9r | |- ( ( ( A e. CC /\ B e. CC ) /\ j e. NN ) -> ( A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) -> -. 1 e. ZZ ) ) |
| 46 | 45 | rexlimdva | |- ( ( A e. CC /\ B e. CC ) -> ( E. j e. NN A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) -> -. 1 e. ZZ ) ) |
| 47 | 5 7 46 | syl2anc | |- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> ( E. j e. NN A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - B ) ) < ( ( abs ` ( A - B ) ) / 2 ) ) ) -> -. 1 e. ZZ ) ) |
| 48 | 19 47 | mpd | |- ( ( F ~~> A /\ F ~~> B /\ A =/= B ) -> -. 1 e. ZZ ) |
| 49 | 48 | 3expia | |- ( ( F ~~> A /\ F ~~> B ) -> ( A =/= B -> -. 1 e. ZZ ) ) |
| 50 | 49 | necon4ad | |- ( ( F ~~> A /\ F ~~> B ) -> ( 1 e. ZZ -> A = B ) ) |
| 51 | 1 50 | mpi | |- ( ( F ~~> A /\ F ~~> B ) -> A = B ) |