This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of two functions expressed as ordered-pair class abstractions. If F has the equation ( x + 2 ) and G the equation ( 3 * z ) then ( G o. F ) has the equation ( 3 * ( x + 2 ) ) . (Contributed by FL, 21-Jun-2012) (Revised by Mario Carneiro, 24-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fmptco.1 | |- ( ( ph /\ x e. A ) -> R e. B ) |
|
| fmptco.2 | |- ( ph -> F = ( x e. A |-> R ) ) |
||
| fmptco.3 | |- ( ph -> G = ( y e. B |-> S ) ) |
||
| fmptco.4 | |- ( y = R -> S = T ) |
||
| Assertion | fmptco | |- ( ph -> ( G o. F ) = ( x e. A |-> T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmptco.1 | |- ( ( ph /\ x e. A ) -> R e. B ) |
|
| 2 | fmptco.2 | |- ( ph -> F = ( x e. A |-> R ) ) |
|
| 3 | fmptco.3 | |- ( ph -> G = ( y e. B |-> S ) ) |
|
| 4 | fmptco.4 | |- ( y = R -> S = T ) |
|
| 5 | relco | |- Rel ( G o. F ) |
|
| 6 | mptrel | |- Rel ( x e. A |-> T ) |
|
| 7 | 2 1 | fmpt3d | |- ( ph -> F : A --> B ) |
| 8 | 7 | ffund | |- ( ph -> Fun F ) |
| 9 | funbrfv | |- ( Fun F -> ( z F u -> ( F ` z ) = u ) ) |
|
| 10 | 9 | imp | |- ( ( Fun F /\ z F u ) -> ( F ` z ) = u ) |
| 11 | 8 10 | sylan | |- ( ( ph /\ z F u ) -> ( F ` z ) = u ) |
| 12 | 11 | eqcomd | |- ( ( ph /\ z F u ) -> u = ( F ` z ) ) |
| 13 | 12 | a1d | |- ( ( ph /\ z F u ) -> ( u G w -> u = ( F ` z ) ) ) |
| 14 | 13 | expimpd | |- ( ph -> ( ( z F u /\ u G w ) -> u = ( F ` z ) ) ) |
| 15 | 14 | pm4.71rd | |- ( ph -> ( ( z F u /\ u G w ) <-> ( u = ( F ` z ) /\ ( z F u /\ u G w ) ) ) ) |
| 16 | 15 | exbidv | |- ( ph -> ( E. u ( z F u /\ u G w ) <-> E. u ( u = ( F ` z ) /\ ( z F u /\ u G w ) ) ) ) |
| 17 | fvex | |- ( F ` z ) e. _V |
|
| 18 | breq2 | |- ( u = ( F ` z ) -> ( z F u <-> z F ( F ` z ) ) ) |
|
| 19 | breq1 | |- ( u = ( F ` z ) -> ( u G w <-> ( F ` z ) G w ) ) |
|
| 20 | 18 19 | anbi12d | |- ( u = ( F ` z ) -> ( ( z F u /\ u G w ) <-> ( z F ( F ` z ) /\ ( F ` z ) G w ) ) ) |
| 21 | 17 20 | ceqsexv | |- ( E. u ( u = ( F ` z ) /\ ( z F u /\ u G w ) ) <-> ( z F ( F ` z ) /\ ( F ` z ) G w ) ) |
| 22 | funfvbrb | |- ( Fun F -> ( z e. dom F <-> z F ( F ` z ) ) ) |
|
| 23 | 8 22 | syl | |- ( ph -> ( z e. dom F <-> z F ( F ` z ) ) ) |
| 24 | 7 | fdmd | |- ( ph -> dom F = A ) |
| 25 | 24 | eleq2d | |- ( ph -> ( z e. dom F <-> z e. A ) ) |
| 26 | 23 25 | bitr3d | |- ( ph -> ( z F ( F ` z ) <-> z e. A ) ) |
| 27 | 2 | fveq1d | |- ( ph -> ( F ` z ) = ( ( x e. A |-> R ) ` z ) ) |
| 28 | eqidd | |- ( ph -> w = w ) |
|
| 29 | 27 3 28 | breq123d | |- ( ph -> ( ( F ` z ) G w <-> ( ( x e. A |-> R ) ` z ) ( y e. B |-> S ) w ) ) |
| 30 | 26 29 | anbi12d | |- ( ph -> ( ( z F ( F ` z ) /\ ( F ` z ) G w ) <-> ( z e. A /\ ( ( x e. A |-> R ) ` z ) ( y e. B |-> S ) w ) ) ) |
| 31 | nfcv | |- F/_ x z |
|
| 32 | nfv | |- F/ x ph |
|
| 33 | nffvmpt1 | |- F/_ x ( ( x e. A |-> R ) ` z ) |
|
| 34 | nfcv | |- F/_ x ( y e. B |-> S ) |
|
| 35 | nfcv | |- F/_ x w |
|
| 36 | 33 34 35 | nfbr | |- F/ x ( ( x e. A |-> R ) ` z ) ( y e. B |-> S ) w |
| 37 | nfcsb1v | |- F/_ x [_ z / x ]_ T |
|
| 38 | 37 | nfeq2 | |- F/ x w = [_ z / x ]_ T |
| 39 | 36 38 | nfbi | |- F/ x ( ( ( x e. A |-> R ) ` z ) ( y e. B |-> S ) w <-> w = [_ z / x ]_ T ) |
| 40 | 32 39 | nfim | |- F/ x ( ph -> ( ( ( x e. A |-> R ) ` z ) ( y e. B |-> S ) w <-> w = [_ z / x ]_ T ) ) |
| 41 | fveq2 | |- ( x = z -> ( ( x e. A |-> R ) ` x ) = ( ( x e. A |-> R ) ` z ) ) |
|
| 42 | 41 | breq1d | |- ( x = z -> ( ( ( x e. A |-> R ) ` x ) ( y e. B |-> S ) w <-> ( ( x e. A |-> R ) ` z ) ( y e. B |-> S ) w ) ) |
| 43 | csbeq1a | |- ( x = z -> T = [_ z / x ]_ T ) |
|
| 44 | 43 | eqeq2d | |- ( x = z -> ( w = T <-> w = [_ z / x ]_ T ) ) |
| 45 | 42 44 | bibi12d | |- ( x = z -> ( ( ( ( x e. A |-> R ) ` x ) ( y e. B |-> S ) w <-> w = T ) <-> ( ( ( x e. A |-> R ) ` z ) ( y e. B |-> S ) w <-> w = [_ z / x ]_ T ) ) ) |
| 46 | 45 | imbi2d | |- ( x = z -> ( ( ph -> ( ( ( x e. A |-> R ) ` x ) ( y e. B |-> S ) w <-> w = T ) ) <-> ( ph -> ( ( ( x e. A |-> R ) ` z ) ( y e. B |-> S ) w <-> w = [_ z / x ]_ T ) ) ) ) |
| 47 | vex | |- w e. _V |
|
| 48 | simpl | |- ( ( y = R /\ u = w ) -> y = R ) |
|
| 49 | 48 | eleq1d | |- ( ( y = R /\ u = w ) -> ( y e. B <-> R e. B ) ) |
| 50 | id | |- ( u = w -> u = w ) |
|
| 51 | 50 4 | eqeqan12rd | |- ( ( y = R /\ u = w ) -> ( u = S <-> w = T ) ) |
| 52 | 49 51 | anbi12d | |- ( ( y = R /\ u = w ) -> ( ( y e. B /\ u = S ) <-> ( R e. B /\ w = T ) ) ) |
| 53 | df-mpt | |- ( y e. B |-> S ) = { <. y , u >. | ( y e. B /\ u = S ) } |
|
| 54 | 52 53 | brabga | |- ( ( R e. B /\ w e. _V ) -> ( R ( y e. B |-> S ) w <-> ( R e. B /\ w = T ) ) ) |
| 55 | 1 47 54 | sylancl | |- ( ( ph /\ x e. A ) -> ( R ( y e. B |-> S ) w <-> ( R e. B /\ w = T ) ) ) |
| 56 | id | |- ( x e. A -> x e. A ) |
|
| 57 | eqid | |- ( x e. A |-> R ) = ( x e. A |-> R ) |
|
| 58 | 57 | fvmpt2 | |- ( ( x e. A /\ R e. B ) -> ( ( x e. A |-> R ) ` x ) = R ) |
| 59 | 56 1 58 | syl2an2 | |- ( ( ph /\ x e. A ) -> ( ( x e. A |-> R ) ` x ) = R ) |
| 60 | 59 | breq1d | |- ( ( ph /\ x e. A ) -> ( ( ( x e. A |-> R ) ` x ) ( y e. B |-> S ) w <-> R ( y e. B |-> S ) w ) ) |
| 61 | 1 | biantrurd | |- ( ( ph /\ x e. A ) -> ( w = T <-> ( R e. B /\ w = T ) ) ) |
| 62 | 55 60 61 | 3bitr4d | |- ( ( ph /\ x e. A ) -> ( ( ( x e. A |-> R ) ` x ) ( y e. B |-> S ) w <-> w = T ) ) |
| 63 | 62 | expcom | |- ( x e. A -> ( ph -> ( ( ( x e. A |-> R ) ` x ) ( y e. B |-> S ) w <-> w = T ) ) ) |
| 64 | 31 40 46 63 | vtoclgaf | |- ( z e. A -> ( ph -> ( ( ( x e. A |-> R ) ` z ) ( y e. B |-> S ) w <-> w = [_ z / x ]_ T ) ) ) |
| 65 | 64 | impcom | |- ( ( ph /\ z e. A ) -> ( ( ( x e. A |-> R ) ` z ) ( y e. B |-> S ) w <-> w = [_ z / x ]_ T ) ) |
| 66 | 65 | pm5.32da | |- ( ph -> ( ( z e. A /\ ( ( x e. A |-> R ) ` z ) ( y e. B |-> S ) w ) <-> ( z e. A /\ w = [_ z / x ]_ T ) ) ) |
| 67 | 30 66 | bitrd | |- ( ph -> ( ( z F ( F ` z ) /\ ( F ` z ) G w ) <-> ( z e. A /\ w = [_ z / x ]_ T ) ) ) |
| 68 | 21 67 | bitrid | |- ( ph -> ( E. u ( u = ( F ` z ) /\ ( z F u /\ u G w ) ) <-> ( z e. A /\ w = [_ z / x ]_ T ) ) ) |
| 69 | 16 68 | bitrd | |- ( ph -> ( E. u ( z F u /\ u G w ) <-> ( z e. A /\ w = [_ z / x ]_ T ) ) ) |
| 70 | vex | |- z e. _V |
|
| 71 | 70 47 | opelco | |- ( <. z , w >. e. ( G o. F ) <-> E. u ( z F u /\ u G w ) ) |
| 72 | df-mpt | |- ( x e. A |-> T ) = { <. x , v >. | ( x e. A /\ v = T ) } |
|
| 73 | 72 | eleq2i | |- ( <. z , w >. e. ( x e. A |-> T ) <-> <. z , w >. e. { <. x , v >. | ( x e. A /\ v = T ) } ) |
| 74 | nfv | |- F/ x z e. A |
|
| 75 | 37 | nfeq2 | |- F/ x v = [_ z / x ]_ T |
| 76 | 74 75 | nfan | |- F/ x ( z e. A /\ v = [_ z / x ]_ T ) |
| 77 | nfv | |- F/ v ( z e. A /\ w = [_ z / x ]_ T ) |
|
| 78 | eleq1w | |- ( x = z -> ( x e. A <-> z e. A ) ) |
|
| 79 | 43 | eqeq2d | |- ( x = z -> ( v = T <-> v = [_ z / x ]_ T ) ) |
| 80 | 78 79 | anbi12d | |- ( x = z -> ( ( x e. A /\ v = T ) <-> ( z e. A /\ v = [_ z / x ]_ T ) ) ) |
| 81 | eqeq1 | |- ( v = w -> ( v = [_ z / x ]_ T <-> w = [_ z / x ]_ T ) ) |
|
| 82 | 81 | anbi2d | |- ( v = w -> ( ( z e. A /\ v = [_ z / x ]_ T ) <-> ( z e. A /\ w = [_ z / x ]_ T ) ) ) |
| 83 | 76 77 70 47 80 82 | opelopabf | |- ( <. z , w >. e. { <. x , v >. | ( x e. A /\ v = T ) } <-> ( z e. A /\ w = [_ z / x ]_ T ) ) |
| 84 | 73 83 | bitri | |- ( <. z , w >. e. ( x e. A |-> T ) <-> ( z e. A /\ w = [_ z / x ]_ T ) ) |
| 85 | 69 71 84 | 3bitr4g | |- ( ph -> ( <. z , w >. e. ( G o. F ) <-> <. z , w >. e. ( x e. A |-> T ) ) ) |
| 86 | 5 6 85 | eqrelrdv | |- ( ph -> ( G o. F ) = ( x e. A |-> T ) ) |