This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Limit of a constant C minus each term of a sequence. (Contributed by NM, 24-Sep-2005) (Revised by Mario Carneiro, 9-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climadd.1 | |- Z = ( ZZ>= ` M ) |
|
| climadd.2 | |- ( ph -> M e. ZZ ) |
||
| climadd.4 | |- ( ph -> F ~~> A ) |
||
| climaddc1.5 | |- ( ph -> C e. CC ) |
||
| climaddc1.6 | |- ( ph -> G e. W ) |
||
| climaddc1.7 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
||
| climsubc2.h | |- ( ( ph /\ k e. Z ) -> ( G ` k ) = ( C - ( F ` k ) ) ) |
||
| Assertion | climsubc2 | |- ( ph -> G ~~> ( C - A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climadd.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | climadd.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | climadd.4 | |- ( ph -> F ~~> A ) |
|
| 4 | climaddc1.5 | |- ( ph -> C e. CC ) |
|
| 5 | climaddc1.6 | |- ( ph -> G e. W ) |
|
| 6 | climaddc1.7 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
|
| 7 | climsubc2.h | |- ( ( ph /\ k e. Z ) -> ( G ` k ) = ( C - ( F ` k ) ) ) |
|
| 8 | 0z | |- 0 e. ZZ |
|
| 9 | uzssz | |- ( ZZ>= ` 0 ) C_ ZZ |
|
| 10 | zex | |- ZZ e. _V |
|
| 11 | 9 10 | climconst2 | |- ( ( C e. CC /\ 0 e. ZZ ) -> ( ZZ X. { C } ) ~~> C ) |
| 12 | 4 8 11 | sylancl | |- ( ph -> ( ZZ X. { C } ) ~~> C ) |
| 13 | eluzelz | |- ( k e. ( ZZ>= ` M ) -> k e. ZZ ) |
|
| 14 | 13 1 | eleq2s | |- ( k e. Z -> k e. ZZ ) |
| 15 | fvconst2g | |- ( ( C e. CC /\ k e. ZZ ) -> ( ( ZZ X. { C } ) ` k ) = C ) |
|
| 16 | 4 14 15 | syl2an | |- ( ( ph /\ k e. Z ) -> ( ( ZZ X. { C } ) ` k ) = C ) |
| 17 | 4 | adantr | |- ( ( ph /\ k e. Z ) -> C e. CC ) |
| 18 | 16 17 | eqeltrd | |- ( ( ph /\ k e. Z ) -> ( ( ZZ X. { C } ) ` k ) e. CC ) |
| 19 | 16 | oveq1d | |- ( ( ph /\ k e. Z ) -> ( ( ( ZZ X. { C } ) ` k ) - ( F ` k ) ) = ( C - ( F ` k ) ) ) |
| 20 | 7 19 | eqtr4d | |- ( ( ph /\ k e. Z ) -> ( G ` k ) = ( ( ( ZZ X. { C } ) ` k ) - ( F ` k ) ) ) |
| 21 | 1 2 12 5 3 18 6 20 | climsub | |- ( ph -> G ~~> ( C - A ) ) |