This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The alternating series test. If G ( k ) is a decreasing sequence that converges to 0 , then sum_ k e. Z ( -u 1 ^ k ) x. G ( k ) is a convergent series. (Note that the first term is positive if M is even, and negative if M is odd. If the parity of your series does not match up with this, you will need to post-compose the series with multiplication by -u 1 using isermulc2 .) (Contributed by Mario Carneiro, 7-Apr-2015) (Proof shortened by AV, 9-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iseralt.1 | |- Z = ( ZZ>= ` M ) |
|
| iseralt.2 | |- ( ph -> M e. ZZ ) |
||
| iseralt.3 | |- ( ph -> G : Z --> RR ) |
||
| iseralt.4 | |- ( ( ph /\ k e. Z ) -> ( G ` ( k + 1 ) ) <_ ( G ` k ) ) |
||
| iseralt.5 | |- ( ph -> G ~~> 0 ) |
||
| iseralt.6 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = ( ( -u 1 ^ k ) x. ( G ` k ) ) ) |
||
| Assertion | iseralt | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseralt.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | iseralt.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | iseralt.3 | |- ( ph -> G : Z --> RR ) |
|
| 4 | iseralt.4 | |- ( ( ph /\ k e. Z ) -> ( G ` ( k + 1 ) ) <_ ( G ` k ) ) |
|
| 5 | iseralt.5 | |- ( ph -> G ~~> 0 ) |
|
| 6 | iseralt.6 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = ( ( -u 1 ^ k ) x. ( G ` k ) ) ) |
|
| 7 | seqex | |- seq M ( + , F ) e. _V |
|
| 8 | 7 | a1i | |- ( ph -> seq M ( + , F ) e. _V ) |
| 9 | climrel | |- Rel ~~> |
|
| 10 | 9 | brrelex1i | |- ( G ~~> 0 -> G e. _V ) |
| 11 | 5 10 | syl | |- ( ph -> G e. _V ) |
| 12 | eqidd | |- ( ( ph /\ n e. Z ) -> ( G ` n ) = ( G ` n ) ) |
|
| 13 | 3 | ffvelcdmda | |- ( ( ph /\ n e. Z ) -> ( G ` n ) e. RR ) |
| 14 | 13 | recnd | |- ( ( ph /\ n e. Z ) -> ( G ` n ) e. CC ) |
| 15 | 1 2 11 12 14 | clim0c | |- ( ph -> ( G ~~> 0 <-> A. x e. RR+ E. j e. Z A. n e. ( ZZ>= ` j ) ( abs ` ( G ` n ) ) < x ) ) |
| 16 | 5 15 | mpbid | |- ( ph -> A. x e. RR+ E. j e. Z A. n e. ( ZZ>= ` j ) ( abs ` ( G ` n ) ) < x ) |
| 17 | simpr | |- ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) -> j e. Z ) |
|
| 18 | 17 1 | eleqtrdi | |- ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) -> j e. ( ZZ>= ` M ) ) |
| 19 | eluzelz | |- ( j e. ( ZZ>= ` M ) -> j e. ZZ ) |
|
| 20 | uzid | |- ( j e. ZZ -> j e. ( ZZ>= ` j ) ) |
|
| 21 | 18 19 20 | 3syl | |- ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) -> j e. ( ZZ>= ` j ) ) |
| 22 | peano2uz | |- ( j e. ( ZZ>= ` j ) -> ( j + 1 ) e. ( ZZ>= ` j ) ) |
|
| 23 | 2fveq3 | |- ( n = ( j + 1 ) -> ( abs ` ( G ` n ) ) = ( abs ` ( G ` ( j + 1 ) ) ) ) |
|
| 24 | 23 | breq1d | |- ( n = ( j + 1 ) -> ( ( abs ` ( G ` n ) ) < x <-> ( abs ` ( G ` ( j + 1 ) ) ) < x ) ) |
| 25 | 24 | rspcv | |- ( ( j + 1 ) e. ( ZZ>= ` j ) -> ( A. n e. ( ZZ>= ` j ) ( abs ` ( G ` n ) ) < x -> ( abs ` ( G ` ( j + 1 ) ) ) < x ) ) |
| 26 | 21 22 25 | 3syl | |- ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) -> ( A. n e. ( ZZ>= ` j ) ( abs ` ( G ` n ) ) < x -> ( abs ` ( G ` ( j + 1 ) ) ) < x ) ) |
| 27 | eluzelz | |- ( n e. ( ZZ>= ` j ) -> n e. ZZ ) |
|
| 28 | 27 | ad2antll | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> n e. ZZ ) |
| 29 | 28 | zcnd | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> n e. CC ) |
| 30 | 19 1 | eleq2s | |- ( j e. Z -> j e. ZZ ) |
| 31 | 30 | ad2antrl | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> j e. ZZ ) |
| 32 | 31 | zcnd | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> j e. CC ) |
| 33 | 29 32 | subcld | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( n - j ) e. CC ) |
| 34 | 2cnd | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> 2 e. CC ) |
|
| 35 | 2ne0 | |- 2 =/= 0 |
|
| 36 | 35 | a1i | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> 2 =/= 0 ) |
| 37 | 33 34 36 | divcan2d | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( 2 x. ( ( n - j ) / 2 ) ) = ( n - j ) ) |
| 38 | 37 | oveq2d | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( j + ( 2 x. ( ( n - j ) / 2 ) ) ) = ( j + ( n - j ) ) ) |
| 39 | 32 29 | pncan3d | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( j + ( n - j ) ) = n ) |
| 40 | 38 39 | eqtr2d | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> n = ( j + ( 2 x. ( ( n - j ) / 2 ) ) ) ) |
| 41 | 40 | adantr | |- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( n - j ) / 2 ) e. ZZ ) -> n = ( j + ( 2 x. ( ( n - j ) / 2 ) ) ) ) |
| 42 | 41 | fveq2d | |- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( n - j ) / 2 ) e. ZZ ) -> ( seq M ( + , F ) ` n ) = ( seq M ( + , F ) ` ( j + ( 2 x. ( ( n - j ) / 2 ) ) ) ) ) |
| 43 | 42 | fvoveq1d | |- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( n - j ) / 2 ) e. ZZ ) -> ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) = ( abs ` ( ( seq M ( + , F ) ` ( j + ( 2 x. ( ( n - j ) / 2 ) ) ) ) - ( seq M ( + , F ) ` j ) ) ) ) |
| 44 | simpll | |- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( n - j ) / 2 ) e. ZZ ) -> ph ) |
|
| 45 | simpl | |- ( ( j e. Z /\ n e. ( ZZ>= ` j ) ) -> j e. Z ) |
|
| 46 | 45 | ad2antlr | |- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( n - j ) / 2 ) e. ZZ ) -> j e. Z ) |
| 47 | simpr | |- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( n - j ) / 2 ) e. ZZ ) -> ( ( n - j ) / 2 ) e. ZZ ) |
|
| 48 | 28 31 | zsubcld | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( n - j ) e. ZZ ) |
| 49 | 48 | zred | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( n - j ) e. RR ) |
| 50 | 2rp | |- 2 e. RR+ |
|
| 51 | 50 | a1i | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> 2 e. RR+ ) |
| 52 | eluzle | |- ( n e. ( ZZ>= ` j ) -> j <_ n ) |
|
| 53 | 52 | ad2antll | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> j <_ n ) |
| 54 | 28 | zred | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> n e. RR ) |
| 55 | 31 | zred | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> j e. RR ) |
| 56 | 54 55 | subge0d | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( 0 <_ ( n - j ) <-> j <_ n ) ) |
| 57 | 53 56 | mpbird | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> 0 <_ ( n - j ) ) |
| 58 | 49 51 57 | divge0d | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> 0 <_ ( ( n - j ) / 2 ) ) |
| 59 | 58 | adantr | |- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( n - j ) / 2 ) e. ZZ ) -> 0 <_ ( ( n - j ) / 2 ) ) |
| 60 | elnn0z | |- ( ( ( n - j ) / 2 ) e. NN0 <-> ( ( ( n - j ) / 2 ) e. ZZ /\ 0 <_ ( ( n - j ) / 2 ) ) ) |
|
| 61 | 47 59 60 | sylanbrc | |- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( n - j ) / 2 ) e. ZZ ) -> ( ( n - j ) / 2 ) e. NN0 ) |
| 62 | 1 2 3 4 5 6 | iseraltlem3 | |- ( ( ph /\ j e. Z /\ ( ( n - j ) / 2 ) e. NN0 ) -> ( ( abs ` ( ( seq M ( + , F ) ` ( j + ( 2 x. ( ( n - j ) / 2 ) ) ) ) - ( seq M ( + , F ) ` j ) ) ) <_ ( G ` ( j + 1 ) ) /\ ( abs ` ( ( seq M ( + , F ) ` ( ( j + ( 2 x. ( ( n - j ) / 2 ) ) ) + 1 ) ) - ( seq M ( + , F ) ` j ) ) ) <_ ( G ` ( j + 1 ) ) ) ) |
| 63 | 62 | simpld | |- ( ( ph /\ j e. Z /\ ( ( n - j ) / 2 ) e. NN0 ) -> ( abs ` ( ( seq M ( + , F ) ` ( j + ( 2 x. ( ( n - j ) / 2 ) ) ) ) - ( seq M ( + , F ) ` j ) ) ) <_ ( G ` ( j + 1 ) ) ) |
| 64 | 44 46 61 63 | syl3anc | |- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( n - j ) / 2 ) e. ZZ ) -> ( abs ` ( ( seq M ( + , F ) ` ( j + ( 2 x. ( ( n - j ) / 2 ) ) ) ) - ( seq M ( + , F ) ` j ) ) ) <_ ( G ` ( j + 1 ) ) ) |
| 65 | 43 64 | eqbrtrd | |- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( n - j ) / 2 ) e. ZZ ) -> ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) <_ ( G ` ( j + 1 ) ) ) |
| 66 | 2div2e1 | |- ( 2 / 2 ) = 1 |
|
| 67 | 66 | oveq2i | |- ( ( ( ( n - j ) + 1 ) / 2 ) - ( 2 / 2 ) ) = ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) |
| 68 | peano2cn | |- ( ( n - j ) e. CC -> ( ( n - j ) + 1 ) e. CC ) |
|
| 69 | 33 68 | syl | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( n - j ) + 1 ) e. CC ) |
| 70 | 69 34 34 36 | divsubdird | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( ( ( n - j ) + 1 ) - 2 ) / 2 ) = ( ( ( ( n - j ) + 1 ) / 2 ) - ( 2 / 2 ) ) ) |
| 71 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 72 | 71 | oveq2i | |- ( ( ( n - j ) + 1 ) - 2 ) = ( ( ( n - j ) + 1 ) - ( 1 + 1 ) ) |
| 73 | ax-1cn | |- 1 e. CC |
|
| 74 | 73 | a1i | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> 1 e. CC ) |
| 75 | 33 74 74 | pnpcan2d | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( ( n - j ) + 1 ) - ( 1 + 1 ) ) = ( ( n - j ) - 1 ) ) |
| 76 | 72 75 | eqtrid | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( ( n - j ) + 1 ) - 2 ) = ( ( n - j ) - 1 ) ) |
| 77 | 76 | oveq1d | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( ( ( n - j ) + 1 ) - 2 ) / 2 ) = ( ( ( n - j ) - 1 ) / 2 ) ) |
| 78 | 70 77 | eqtr3d | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( ( ( n - j ) + 1 ) / 2 ) - ( 2 / 2 ) ) = ( ( ( n - j ) - 1 ) / 2 ) ) |
| 79 | 67 78 | eqtr3id | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) = ( ( ( n - j ) - 1 ) / 2 ) ) |
| 80 | 79 | oveq2d | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( 2 x. ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) ) = ( 2 x. ( ( ( n - j ) - 1 ) / 2 ) ) ) |
| 81 | subcl | |- ( ( ( n - j ) e. CC /\ 1 e. CC ) -> ( ( n - j ) - 1 ) e. CC ) |
|
| 82 | 33 73 81 | sylancl | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( n - j ) - 1 ) e. CC ) |
| 83 | 82 34 36 | divcan2d | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( 2 x. ( ( ( n - j ) - 1 ) / 2 ) ) = ( ( n - j ) - 1 ) ) |
| 84 | 29 32 74 | sub32d | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( n - j ) - 1 ) = ( ( n - 1 ) - j ) ) |
| 85 | 80 83 84 | 3eqtrd | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( 2 x. ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) ) = ( ( n - 1 ) - j ) ) |
| 86 | 85 | oveq2d | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( j + ( 2 x. ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) ) ) = ( j + ( ( n - 1 ) - j ) ) ) |
| 87 | subcl | |- ( ( n e. CC /\ 1 e. CC ) -> ( n - 1 ) e. CC ) |
|
| 88 | 29 73 87 | sylancl | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( n - 1 ) e. CC ) |
| 89 | 32 88 | pncan3d | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( j + ( ( n - 1 ) - j ) ) = ( n - 1 ) ) |
| 90 | 86 89 | eqtrd | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( j + ( 2 x. ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) ) ) = ( n - 1 ) ) |
| 91 | 90 | oveq1d | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( j + ( 2 x. ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) ) ) + 1 ) = ( ( n - 1 ) + 1 ) ) |
| 92 | npcan | |- ( ( n e. CC /\ 1 e. CC ) -> ( ( n - 1 ) + 1 ) = n ) |
|
| 93 | 29 73 92 | sylancl | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( n - 1 ) + 1 ) = n ) |
| 94 | 91 93 | eqtr2d | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> n = ( ( j + ( 2 x. ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) ) ) + 1 ) ) |
| 95 | 94 | adantr | |- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) -> n = ( ( j + ( 2 x. ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) ) ) + 1 ) ) |
| 96 | 95 | fveq2d | |- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) -> ( seq M ( + , F ) ` n ) = ( seq M ( + , F ) ` ( ( j + ( 2 x. ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) ) ) + 1 ) ) ) |
| 97 | 96 | fvoveq1d | |- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) -> ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) = ( abs ` ( ( seq M ( + , F ) ` ( ( j + ( 2 x. ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) ) ) + 1 ) ) - ( seq M ( + , F ) ` j ) ) ) ) |
| 98 | simpll | |- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) -> ph ) |
|
| 99 | 45 | ad2antlr | |- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) -> j e. Z ) |
| 100 | simpr | |- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) -> ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) |
|
| 101 | uznn0sub | |- ( n e. ( ZZ>= ` j ) -> ( n - j ) e. NN0 ) |
|
| 102 | 101 | ad2antll | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( n - j ) e. NN0 ) |
| 103 | nn0p1nn | |- ( ( n - j ) e. NN0 -> ( ( n - j ) + 1 ) e. NN ) |
|
| 104 | 102 103 | syl | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( n - j ) + 1 ) e. NN ) |
| 105 | 104 | nnrpd | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( n - j ) + 1 ) e. RR+ ) |
| 106 | 105 | rphalfcld | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( ( n - j ) + 1 ) / 2 ) e. RR+ ) |
| 107 | 106 | rpgt0d | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> 0 < ( ( ( n - j ) + 1 ) / 2 ) ) |
| 108 | 107 | adantr | |- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) -> 0 < ( ( ( n - j ) + 1 ) / 2 ) ) |
| 109 | elnnz | |- ( ( ( ( n - j ) + 1 ) / 2 ) e. NN <-> ( ( ( ( n - j ) + 1 ) / 2 ) e. ZZ /\ 0 < ( ( ( n - j ) + 1 ) / 2 ) ) ) |
|
| 110 | 100 108 109 | sylanbrc | |- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) -> ( ( ( n - j ) + 1 ) / 2 ) e. NN ) |
| 111 | nnm1nn0 | |- ( ( ( ( n - j ) + 1 ) / 2 ) e. NN -> ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) e. NN0 ) |
|
| 112 | 110 111 | syl | |- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) -> ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) e. NN0 ) |
| 113 | 1 2 3 4 5 6 | iseraltlem3 | |- ( ( ph /\ j e. Z /\ ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) e. NN0 ) -> ( ( abs ` ( ( seq M ( + , F ) ` ( j + ( 2 x. ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) ) ) ) - ( seq M ( + , F ) ` j ) ) ) <_ ( G ` ( j + 1 ) ) /\ ( abs ` ( ( seq M ( + , F ) ` ( ( j + ( 2 x. ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) ) ) + 1 ) ) - ( seq M ( + , F ) ` j ) ) ) <_ ( G ` ( j + 1 ) ) ) ) |
| 114 | 113 | simprd | |- ( ( ph /\ j e. Z /\ ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) e. NN0 ) -> ( abs ` ( ( seq M ( + , F ) ` ( ( j + ( 2 x. ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) ) ) + 1 ) ) - ( seq M ( + , F ) ` j ) ) ) <_ ( G ` ( j + 1 ) ) ) |
| 115 | 98 99 112 114 | syl3anc | |- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) -> ( abs ` ( ( seq M ( + , F ) ` ( ( j + ( 2 x. ( ( ( ( n - j ) + 1 ) / 2 ) - 1 ) ) ) + 1 ) ) - ( seq M ( + , F ) ` j ) ) ) <_ ( G ` ( j + 1 ) ) ) |
| 116 | 97 115 | eqbrtrd | |- ( ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) -> ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) <_ ( G ` ( j + 1 ) ) ) |
| 117 | zeo | |- ( ( n - j ) e. ZZ -> ( ( ( n - j ) / 2 ) e. ZZ \/ ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) ) |
|
| 118 | 48 117 | syl | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( ( n - j ) / 2 ) e. ZZ \/ ( ( ( n - j ) + 1 ) / 2 ) e. ZZ ) ) |
| 119 | 65 116 118 | mpjaodan | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) <_ ( G ` ( j + 1 ) ) ) |
| 120 | 1 | peano2uzs | |- ( j e. Z -> ( j + 1 ) e. Z ) |
| 121 | 120 | adantr | |- ( ( j e. Z /\ n e. ( ZZ>= ` j ) ) -> ( j + 1 ) e. Z ) |
| 122 | ffvelcdm | |- ( ( G : Z --> RR /\ ( j + 1 ) e. Z ) -> ( G ` ( j + 1 ) ) e. RR ) |
|
| 123 | 3 121 122 | syl2an | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( G ` ( j + 1 ) ) e. RR ) |
| 124 | 1 2 3 4 5 | iseraltlem1 | |- ( ( ph /\ ( j + 1 ) e. Z ) -> 0 <_ ( G ` ( j + 1 ) ) ) |
| 125 | 121 124 | sylan2 | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> 0 <_ ( G ` ( j + 1 ) ) ) |
| 126 | 123 125 | absidd | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( abs ` ( G ` ( j + 1 ) ) ) = ( G ` ( j + 1 ) ) ) |
| 127 | 119 126 | breqtrrd | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) <_ ( abs ` ( G ` ( j + 1 ) ) ) ) |
| 128 | 127 | adantlr | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) <_ ( abs ` ( G ` ( j + 1 ) ) ) ) |
| 129 | neg1rr | |- -u 1 e. RR |
|
| 130 | 129 | a1i | |- ( ( ph /\ k e. Z ) -> -u 1 e. RR ) |
| 131 | neg1ne0 | |- -u 1 =/= 0 |
|
| 132 | 131 | a1i | |- ( ( ph /\ k e. Z ) -> -u 1 =/= 0 ) |
| 133 | eluzelz | |- ( k e. ( ZZ>= ` M ) -> k e. ZZ ) |
|
| 134 | 133 1 | eleq2s | |- ( k e. Z -> k e. ZZ ) |
| 135 | 134 | adantl | |- ( ( ph /\ k e. Z ) -> k e. ZZ ) |
| 136 | 130 132 135 | reexpclzd | |- ( ( ph /\ k e. Z ) -> ( -u 1 ^ k ) e. RR ) |
| 137 | 3 | ffvelcdmda | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. RR ) |
| 138 | 136 137 | remulcld | |- ( ( ph /\ k e. Z ) -> ( ( -u 1 ^ k ) x. ( G ` k ) ) e. RR ) |
| 139 | 6 138 | eqeltrd | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
| 140 | 1 2 139 | serfre | |- ( ph -> seq M ( + , F ) : Z --> RR ) |
| 141 | 1 | uztrn2 | |- ( ( j e. Z /\ n e. ( ZZ>= ` j ) ) -> n e. Z ) |
| 142 | ffvelcdm | |- ( ( seq M ( + , F ) : Z --> RR /\ n e. Z ) -> ( seq M ( + , F ) ` n ) e. RR ) |
|
| 143 | 140 141 142 | syl2an | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( seq M ( + , F ) ` n ) e. RR ) |
| 144 | ffvelcdm | |- ( ( seq M ( + , F ) : Z --> RR /\ j e. Z ) -> ( seq M ( + , F ) ` j ) e. RR ) |
|
| 145 | 140 45 144 | syl2an | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( seq M ( + , F ) ` j ) e. RR ) |
| 146 | 143 145 | resubcld | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) e. RR ) |
| 147 | 146 | recnd | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) e. CC ) |
| 148 | 147 | abscld | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) e. RR ) |
| 149 | 148 | adantlr | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) e. RR ) |
| 150 | 126 123 | eqeltrd | |- ( ( ph /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( abs ` ( G ` ( j + 1 ) ) ) e. RR ) |
| 151 | 150 | adantlr | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( abs ` ( G ` ( j + 1 ) ) ) e. RR ) |
| 152 | rpre | |- ( x e. RR+ -> x e. RR ) |
|
| 153 | 152 | ad2antlr | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> x e. RR ) |
| 154 | lelttr | |- ( ( ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) e. RR /\ ( abs ` ( G ` ( j + 1 ) ) ) e. RR /\ x e. RR ) -> ( ( ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) <_ ( abs ` ( G ` ( j + 1 ) ) ) /\ ( abs ` ( G ` ( j + 1 ) ) ) < x ) -> ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) < x ) ) |
|
| 155 | 149 151 153 154 | syl3anc | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) <_ ( abs ` ( G ` ( j + 1 ) ) ) /\ ( abs ` ( G ` ( j + 1 ) ) ) < x ) -> ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) < x ) ) |
| 156 | 128 155 | mpand | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( abs ` ( G ` ( j + 1 ) ) ) < x -> ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) < x ) ) |
| 157 | 140 | adantr | |- ( ( ph /\ x e. RR+ ) -> seq M ( + , F ) : Z --> RR ) |
| 158 | 157 141 142 | syl2an | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( seq M ( + , F ) ` n ) e. RR ) |
| 159 | 156 158 | jctild | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( abs ` ( G ` ( j + 1 ) ) ) < x -> ( ( seq M ( + , F ) ` n ) e. RR /\ ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) < x ) ) ) |
| 160 | 159 | anassrs | |- ( ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) /\ n e. ( ZZ>= ` j ) ) -> ( ( abs ` ( G ` ( j + 1 ) ) ) < x -> ( ( seq M ( + , F ) ` n ) e. RR /\ ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) < x ) ) ) |
| 161 | 160 | ralrimdva | |- ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) -> ( ( abs ` ( G ` ( j + 1 ) ) ) < x -> A. n e. ( ZZ>= ` j ) ( ( seq M ( + , F ) ` n ) e. RR /\ ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) < x ) ) ) |
| 162 | 26 161 | syld | |- ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) -> ( A. n e. ( ZZ>= ` j ) ( abs ` ( G ` n ) ) < x -> A. n e. ( ZZ>= ` j ) ( ( seq M ( + , F ) ` n ) e. RR /\ ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) < x ) ) ) |
| 163 | 162 | reximdva | |- ( ( ph /\ x e. RR+ ) -> ( E. j e. Z A. n e. ( ZZ>= ` j ) ( abs ` ( G ` n ) ) < x -> E. j e. Z A. n e. ( ZZ>= ` j ) ( ( seq M ( + , F ) ` n ) e. RR /\ ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) < x ) ) ) |
| 164 | 163 | ralimdva | |- ( ph -> ( A. x e. RR+ E. j e. Z A. n e. ( ZZ>= ` j ) ( abs ` ( G ` n ) ) < x -> A. x e. RR+ E. j e. Z A. n e. ( ZZ>= ` j ) ( ( seq M ( + , F ) ` n ) e. RR /\ ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) < x ) ) ) |
| 165 | 16 164 | mpd | |- ( ph -> A. x e. RR+ E. j e. Z A. n e. ( ZZ>= ` j ) ( ( seq M ( + , F ) ` n ) e. RR /\ ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` j ) ) ) < x ) ) |
| 166 | 1 8 165 | caurcvg2 | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |