This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | seqeq1 | |- ( M = N -> seq M ( .+ , F ) = seq N ( .+ , F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( M = N -> ( F ` M ) = ( F ` N ) ) |
|
| 2 | opeq12 | |- ( ( M = N /\ ( F ` M ) = ( F ` N ) ) -> <. M , ( F ` M ) >. = <. N , ( F ` N ) >. ) |
|
| 3 | 1 2 | mpdan | |- ( M = N -> <. M , ( F ` M ) >. = <. N , ( F ` N ) >. ) |
| 4 | rdgeq2 | |- ( <. M , ( F ` M ) >. = <. N , ( F ` N ) >. -> rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( F ` ( x + 1 ) ) ) >. ) , <. M , ( F ` M ) >. ) = rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( F ` ( x + 1 ) ) ) >. ) , <. N , ( F ` N ) >. ) ) |
|
| 5 | 3 4 | syl | |- ( M = N -> rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( F ` ( x + 1 ) ) ) >. ) , <. M , ( F ` M ) >. ) = rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( F ` ( x + 1 ) ) ) >. ) , <. N , ( F ` N ) >. ) ) |
| 6 | 5 | imaeq1d | |- ( M = N -> ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( F ` ( x + 1 ) ) ) >. ) , <. M , ( F ` M ) >. ) " _om ) = ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( F ` ( x + 1 ) ) ) >. ) , <. N , ( F ` N ) >. ) " _om ) ) |
| 7 | df-seq | |- seq M ( .+ , F ) = ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( F ` ( x + 1 ) ) ) >. ) , <. M , ( F ` M ) >. ) " _om ) |
|
| 8 | df-seq | |- seq N ( .+ , F ) = ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( F ` ( x + 1 ) ) ) >. ) , <. N , ( F ` N ) >. ) " _om ) |
|
| 9 | 6 7 8 | 3eqtr4g | |- ( M = N -> seq M ( .+ , F ) = seq N ( .+ , F ) ) |