This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Leibniz formula for _pi . This version of leibpi looks nicer but does not assert that the series is convergent so is not as practically useful. (Contributed by Mario Carneiro, 7-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | leibpisum | |- sum_ n e. NN0 ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) = ( _pi / 4 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 2 | 0zd | |- ( T. -> 0 e. ZZ ) |
|
| 3 | oveq2 | |- ( k = n -> ( -u 1 ^ k ) = ( -u 1 ^ n ) ) |
|
| 4 | oveq2 | |- ( k = n -> ( 2 x. k ) = ( 2 x. n ) ) |
|
| 5 | 4 | oveq1d | |- ( k = n -> ( ( 2 x. k ) + 1 ) = ( ( 2 x. n ) + 1 ) ) |
| 6 | 3 5 | oveq12d | |- ( k = n -> ( ( -u 1 ^ k ) / ( ( 2 x. k ) + 1 ) ) = ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) |
| 7 | eqid | |- ( k e. NN0 |-> ( ( -u 1 ^ k ) / ( ( 2 x. k ) + 1 ) ) ) = ( k e. NN0 |-> ( ( -u 1 ^ k ) / ( ( 2 x. k ) + 1 ) ) ) |
|
| 8 | ovex | |- ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) e. _V |
|
| 9 | 6 7 8 | fvmpt | |- ( n e. NN0 -> ( ( k e. NN0 |-> ( ( -u 1 ^ k ) / ( ( 2 x. k ) + 1 ) ) ) ` n ) = ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) |
| 10 | 9 | adantl | |- ( ( T. /\ n e. NN0 ) -> ( ( k e. NN0 |-> ( ( -u 1 ^ k ) / ( ( 2 x. k ) + 1 ) ) ) ` n ) = ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) |
| 11 | neg1rr | |- -u 1 e. RR |
|
| 12 | reexpcl | |- ( ( -u 1 e. RR /\ n e. NN0 ) -> ( -u 1 ^ n ) e. RR ) |
|
| 13 | 11 12 | mpan | |- ( n e. NN0 -> ( -u 1 ^ n ) e. RR ) |
| 14 | 2nn0 | |- 2 e. NN0 |
|
| 15 | nn0mulcl | |- ( ( 2 e. NN0 /\ n e. NN0 ) -> ( 2 x. n ) e. NN0 ) |
|
| 16 | 14 15 | mpan | |- ( n e. NN0 -> ( 2 x. n ) e. NN0 ) |
| 17 | nn0p1nn | |- ( ( 2 x. n ) e. NN0 -> ( ( 2 x. n ) + 1 ) e. NN ) |
|
| 18 | 16 17 | syl | |- ( n e. NN0 -> ( ( 2 x. n ) + 1 ) e. NN ) |
| 19 | 13 18 | nndivred | |- ( n e. NN0 -> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) e. RR ) |
| 20 | 19 | recnd | |- ( n e. NN0 -> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) e. CC ) |
| 21 | 20 | adantl | |- ( ( T. /\ n e. NN0 ) -> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) e. CC ) |
| 22 | 7 | leibpi | |- seq 0 ( + , ( k e. NN0 |-> ( ( -u 1 ^ k ) / ( ( 2 x. k ) + 1 ) ) ) ) ~~> ( _pi / 4 ) |
| 23 | 22 | a1i | |- ( T. -> seq 0 ( + , ( k e. NN0 |-> ( ( -u 1 ^ k ) / ( ( 2 x. k ) + 1 ) ) ) ) ~~> ( _pi / 4 ) ) |
| 24 | 1 2 10 21 23 | isumclim | |- ( T. -> sum_ n e. NN0 ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) = ( _pi / 4 ) ) |
| 25 | 24 | mptru | |- sum_ n e. NN0 ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) = ( _pi / 4 ) |