This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The arctangent function is real for all real inputs. (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atanrecl | |- ( A e. RR -> ( arctan ` A ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( A e. RR /\ A = 0 ) -> A = 0 ) |
|
| 2 | 1 | fveq2d | |- ( ( A e. RR /\ A = 0 ) -> ( arctan ` A ) = ( arctan ` 0 ) ) |
| 3 | atan0 | |- ( arctan ` 0 ) = 0 |
|
| 4 | 0re | |- 0 e. RR |
|
| 5 | 3 4 | eqeltri | |- ( arctan ` 0 ) e. RR |
| 6 | 2 5 | eqeltrdi | |- ( ( A e. RR /\ A = 0 ) -> ( arctan ` A ) e. RR ) |
| 7 | atanre | |- ( A e. RR -> A e. dom arctan ) |
|
| 8 | 7 | adantr | |- ( ( A e. RR /\ A =/= 0 ) -> A e. dom arctan ) |
| 9 | atancl | |- ( A e. dom arctan -> ( arctan ` A ) e. CC ) |
|
| 10 | 8 9 | syl | |- ( ( A e. RR /\ A =/= 0 ) -> ( arctan ` A ) e. CC ) |
| 11 | simpl | |- ( ( A e. RR /\ A =/= 0 ) -> A e. RR ) |
|
| 12 | 11 | recnd | |- ( ( A e. RR /\ A =/= 0 ) -> A e. CC ) |
| 13 | rere | |- ( A e. RR -> ( Re ` A ) = A ) |
|
| 14 | 13 | adantr | |- ( ( A e. RR /\ A =/= 0 ) -> ( Re ` A ) = A ) |
| 15 | simpr | |- ( ( A e. RR /\ A =/= 0 ) -> A =/= 0 ) |
|
| 16 | 14 15 | eqnetrd | |- ( ( A e. RR /\ A =/= 0 ) -> ( Re ` A ) =/= 0 ) |
| 17 | atancj | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( A e. dom arctan /\ ( * ` ( arctan ` A ) ) = ( arctan ` ( * ` A ) ) ) ) |
|
| 18 | 12 16 17 | syl2anc | |- ( ( A e. RR /\ A =/= 0 ) -> ( A e. dom arctan /\ ( * ` ( arctan ` A ) ) = ( arctan ` ( * ` A ) ) ) ) |
| 19 | 18 | simprd | |- ( ( A e. RR /\ A =/= 0 ) -> ( * ` ( arctan ` A ) ) = ( arctan ` ( * ` A ) ) ) |
| 20 | cjre | |- ( A e. RR -> ( * ` A ) = A ) |
|
| 21 | 20 | adantr | |- ( ( A e. RR /\ A =/= 0 ) -> ( * ` A ) = A ) |
| 22 | 21 | fveq2d | |- ( ( A e. RR /\ A =/= 0 ) -> ( arctan ` ( * ` A ) ) = ( arctan ` A ) ) |
| 23 | 19 22 | eqtrd | |- ( ( A e. RR /\ A =/= 0 ) -> ( * ` ( arctan ` A ) ) = ( arctan ` A ) ) |
| 24 | 10 23 | cjrebd | |- ( ( A e. RR /\ A =/= 0 ) -> ( arctan ` A ) e. RR ) |
| 25 | 6 24 | pm2.61dane | |- ( A e. RR -> ( arctan ` A ) e. RR ) |