This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of 1 raised to an integer power. (Contributed by NM, 15-Dec-2005) (Revised by Mario Carneiro, 4-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1exp | |- ( N e. ZZ -> ( 1 ^ N ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1ex | |- 1 e. _V |
|
| 2 | 1 | snid | |- 1 e. { 1 } |
| 3 | ax-1ne0 | |- 1 =/= 0 |
|
| 4 | ax-1cn | |- 1 e. CC |
|
| 5 | snssi | |- ( 1 e. CC -> { 1 } C_ CC ) |
|
| 6 | 4 5 | ax-mp | |- { 1 } C_ CC |
| 7 | elsni | |- ( x e. { 1 } -> x = 1 ) |
|
| 8 | elsni | |- ( y e. { 1 } -> y = 1 ) |
|
| 9 | oveq12 | |- ( ( x = 1 /\ y = 1 ) -> ( x x. y ) = ( 1 x. 1 ) ) |
|
| 10 | 1t1e1 | |- ( 1 x. 1 ) = 1 |
|
| 11 | 9 10 | eqtrdi | |- ( ( x = 1 /\ y = 1 ) -> ( x x. y ) = 1 ) |
| 12 | 7 8 11 | syl2an | |- ( ( x e. { 1 } /\ y e. { 1 } ) -> ( x x. y ) = 1 ) |
| 13 | ovex | |- ( x x. y ) e. _V |
|
| 14 | 13 | elsn | |- ( ( x x. y ) e. { 1 } <-> ( x x. y ) = 1 ) |
| 15 | 12 14 | sylibr | |- ( ( x e. { 1 } /\ y e. { 1 } ) -> ( x x. y ) e. { 1 } ) |
| 16 | 7 | oveq2d | |- ( x e. { 1 } -> ( 1 / x ) = ( 1 / 1 ) ) |
| 17 | 1div1e1 | |- ( 1 / 1 ) = 1 |
|
| 18 | 16 17 | eqtrdi | |- ( x e. { 1 } -> ( 1 / x ) = 1 ) |
| 19 | ovex | |- ( 1 / x ) e. _V |
|
| 20 | 19 | elsn | |- ( ( 1 / x ) e. { 1 } <-> ( 1 / x ) = 1 ) |
| 21 | 18 20 | sylibr | |- ( x e. { 1 } -> ( 1 / x ) e. { 1 } ) |
| 22 | 21 | adantr | |- ( ( x e. { 1 } /\ x =/= 0 ) -> ( 1 / x ) e. { 1 } ) |
| 23 | 6 15 2 22 | expcl2lem | |- ( ( 1 e. { 1 } /\ 1 =/= 0 /\ N e. ZZ ) -> ( 1 ^ N ) e. { 1 } ) |
| 24 | 2 3 23 | mp3an12 | |- ( N e. ZZ -> ( 1 ^ N ) e. { 1 } ) |
| 25 | elsni | |- ( ( 1 ^ N ) e. { 1 } -> ( 1 ^ N ) = 1 ) |
|
| 26 | 24 25 | syl | |- ( N e. ZZ -> ( 1 ^ N ) = 1 ) |