This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The real number line is a subset of the domain of continuity of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atansopn.d | |- D = ( CC \ ( -oo (,] 0 ) ) |
|
| atansopn.s | |- S = { y e. CC | ( 1 + ( y ^ 2 ) ) e. D } |
||
| Assertion | ressatans | |- RR C_ S |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atansopn.d | |- D = ( CC \ ( -oo (,] 0 ) ) |
|
| 2 | atansopn.s | |- S = { y e. CC | ( 1 + ( y ^ 2 ) ) e. D } |
|
| 3 | ax-resscn | |- RR C_ CC |
|
| 4 | 1re | |- 1 e. RR |
|
| 5 | resqcl | |- ( y e. RR -> ( y ^ 2 ) e. RR ) |
|
| 6 | readdcl | |- ( ( 1 e. RR /\ ( y ^ 2 ) e. RR ) -> ( 1 + ( y ^ 2 ) ) e. RR ) |
|
| 7 | 4 5 6 | sylancr | |- ( y e. RR -> ( 1 + ( y ^ 2 ) ) e. RR ) |
| 8 | 7 | recnd | |- ( y e. RR -> ( 1 + ( y ^ 2 ) ) e. CC ) |
| 9 | 4 | a1i | |- ( y e. RR -> 1 e. RR ) |
| 10 | 0lt1 | |- 0 < 1 |
|
| 11 | 10 | a1i | |- ( y e. RR -> 0 < 1 ) |
| 12 | sqge0 | |- ( y e. RR -> 0 <_ ( y ^ 2 ) ) |
|
| 13 | 9 5 11 12 | addgtge0d | |- ( y e. RR -> 0 < ( 1 + ( y ^ 2 ) ) ) |
| 14 | 0re | |- 0 e. RR |
|
| 15 | ltnle | |- ( ( 0 e. RR /\ ( 1 + ( y ^ 2 ) ) e. RR ) -> ( 0 < ( 1 + ( y ^ 2 ) ) <-> -. ( 1 + ( y ^ 2 ) ) <_ 0 ) ) |
|
| 16 | 14 7 15 | sylancr | |- ( y e. RR -> ( 0 < ( 1 + ( y ^ 2 ) ) <-> -. ( 1 + ( y ^ 2 ) ) <_ 0 ) ) |
| 17 | 13 16 | mpbid | |- ( y e. RR -> -. ( 1 + ( y ^ 2 ) ) <_ 0 ) |
| 18 | mnfxr | |- -oo e. RR* |
|
| 19 | elioc2 | |- ( ( -oo e. RR* /\ 0 e. RR ) -> ( ( 1 + ( y ^ 2 ) ) e. ( -oo (,] 0 ) <-> ( ( 1 + ( y ^ 2 ) ) e. RR /\ -oo < ( 1 + ( y ^ 2 ) ) /\ ( 1 + ( y ^ 2 ) ) <_ 0 ) ) ) |
|
| 20 | 18 14 19 | mp2an | |- ( ( 1 + ( y ^ 2 ) ) e. ( -oo (,] 0 ) <-> ( ( 1 + ( y ^ 2 ) ) e. RR /\ -oo < ( 1 + ( y ^ 2 ) ) /\ ( 1 + ( y ^ 2 ) ) <_ 0 ) ) |
| 21 | 20 | simp3bi | |- ( ( 1 + ( y ^ 2 ) ) e. ( -oo (,] 0 ) -> ( 1 + ( y ^ 2 ) ) <_ 0 ) |
| 22 | 17 21 | nsyl | |- ( y e. RR -> -. ( 1 + ( y ^ 2 ) ) e. ( -oo (,] 0 ) ) |
| 23 | 8 22 | eldifd | |- ( y e. RR -> ( 1 + ( y ^ 2 ) ) e. ( CC \ ( -oo (,] 0 ) ) ) |
| 24 | 23 1 | eleqtrrdi | |- ( y e. RR -> ( 1 + ( y ^ 2 ) ) e. D ) |
| 25 | 24 | rgen | |- A. y e. RR ( 1 + ( y ^ 2 ) ) e. D |
| 26 | ssrab | |- ( RR C_ { y e. CC | ( 1 + ( y ^ 2 ) ) e. D } <-> ( RR C_ CC /\ A. y e. RR ( 1 + ( y ^ 2 ) ) e. D ) ) |
|
| 27 | 3 25 26 | mpbir2an | |- RR C_ { y e. CC | ( 1 + ( y ^ 2 ) ) e. D } |
| 28 | 27 2 | sseqtrri | |- RR C_ S |