This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Taylor series for arctan ( A ) . (Contributed by Mario Carneiro, 1-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | atantayl2.1 | |- F = ( n e. NN |-> if ( 2 || n , 0 , ( ( -u 1 ^ ( ( n - 1 ) / 2 ) ) x. ( ( A ^ n ) / n ) ) ) ) |
|
| Assertion | atantayl2 | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 1 ( + , F ) ~~> ( arctan ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atantayl2.1 | |- F = ( n e. NN |-> if ( 2 || n , 0 , ( ( -u 1 ^ ( ( n - 1 ) / 2 ) ) x. ( ( A ^ n ) / n ) ) ) ) |
|
| 2 | ax-icn | |- _i e. CC |
|
| 3 | 2 | negcli | |- -u _i e. CC |
| 4 | 3 | a1i | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> -u _i e. CC ) |
| 5 | nnnn0 | |- ( n e. NN -> n e. NN0 ) |
|
| 6 | 5 | ad2antlr | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> n e. NN0 ) |
| 7 | 4 6 | expcld | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> ( -u _i ^ n ) e. CC ) |
| 8 | sqneg | |- ( _i e. CC -> ( -u _i ^ 2 ) = ( _i ^ 2 ) ) |
|
| 9 | 2 8 | ax-mp | |- ( -u _i ^ 2 ) = ( _i ^ 2 ) |
| 10 | 9 | oveq1i | |- ( ( -u _i ^ 2 ) ^ ( n / 2 ) ) = ( ( _i ^ 2 ) ^ ( n / 2 ) ) |
| 11 | ine0 | |- _i =/= 0 |
|
| 12 | 2 11 | negne0i | |- -u _i =/= 0 |
| 13 | 12 | a1i | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> -u _i =/= 0 ) |
| 14 | 2z | |- 2 e. ZZ |
|
| 15 | 14 | a1i | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> 2 e. ZZ ) |
| 16 | 2ne0 | |- 2 =/= 0 |
|
| 17 | nnz | |- ( n e. NN -> n e. ZZ ) |
|
| 18 | 17 | adantl | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) -> n e. ZZ ) |
| 19 | dvdsval2 | |- ( ( 2 e. ZZ /\ 2 =/= 0 /\ n e. ZZ ) -> ( 2 || n <-> ( n / 2 ) e. ZZ ) ) |
|
| 20 | 14 16 18 19 | mp3an12i | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) -> ( 2 || n <-> ( n / 2 ) e. ZZ ) ) |
| 21 | 20 | biimpa | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> ( n / 2 ) e. ZZ ) |
| 22 | expmulz | |- ( ( ( -u _i e. CC /\ -u _i =/= 0 ) /\ ( 2 e. ZZ /\ ( n / 2 ) e. ZZ ) ) -> ( -u _i ^ ( 2 x. ( n / 2 ) ) ) = ( ( -u _i ^ 2 ) ^ ( n / 2 ) ) ) |
|
| 23 | 4 13 15 21 22 | syl22anc | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> ( -u _i ^ ( 2 x. ( n / 2 ) ) ) = ( ( -u _i ^ 2 ) ^ ( n / 2 ) ) ) |
| 24 | 2 | a1i | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> _i e. CC ) |
| 25 | 11 | a1i | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> _i =/= 0 ) |
| 26 | expmulz | |- ( ( ( _i e. CC /\ _i =/= 0 ) /\ ( 2 e. ZZ /\ ( n / 2 ) e. ZZ ) ) -> ( _i ^ ( 2 x. ( n / 2 ) ) ) = ( ( _i ^ 2 ) ^ ( n / 2 ) ) ) |
|
| 27 | 24 25 15 21 26 | syl22anc | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> ( _i ^ ( 2 x. ( n / 2 ) ) ) = ( ( _i ^ 2 ) ^ ( n / 2 ) ) ) |
| 28 | 10 23 27 | 3eqtr4a | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> ( -u _i ^ ( 2 x. ( n / 2 ) ) ) = ( _i ^ ( 2 x. ( n / 2 ) ) ) ) |
| 29 | nncn | |- ( n e. NN -> n e. CC ) |
|
| 30 | 29 | ad2antlr | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> n e. CC ) |
| 31 | 2cnd | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> 2 e. CC ) |
|
| 32 | 16 | a1i | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> 2 =/= 0 ) |
| 33 | 30 31 32 | divcan2d | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> ( 2 x. ( n / 2 ) ) = n ) |
| 34 | 33 | oveq2d | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> ( -u _i ^ ( 2 x. ( n / 2 ) ) ) = ( -u _i ^ n ) ) |
| 35 | 33 | oveq2d | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> ( _i ^ ( 2 x. ( n / 2 ) ) ) = ( _i ^ n ) ) |
| 36 | 28 34 35 | 3eqtr3d | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> ( -u _i ^ n ) = ( _i ^ n ) ) |
| 37 | 7 36 | subeq0bd | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> ( ( -u _i ^ n ) - ( _i ^ n ) ) = 0 ) |
| 38 | 37 | oveq2d | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) = ( _i x. 0 ) ) |
| 39 | it0e0 | |- ( _i x. 0 ) = 0 |
|
| 40 | 38 39 | eqtrdi | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) = 0 ) |
| 41 | 40 | oveq1d | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> ( ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) / 2 ) = ( 0 / 2 ) ) |
| 42 | 2cn | |- 2 e. CC |
|
| 43 | 42 16 | div0i | |- ( 0 / 2 ) = 0 |
| 44 | 41 43 | eqtrdi | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> ( ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) / 2 ) = 0 ) |
| 45 | 44 | oveq1d | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> ( ( ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) / 2 ) x. ( ( A ^ n ) / n ) ) = ( 0 x. ( ( A ^ n ) / n ) ) ) |
| 46 | simplll | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> A e. CC ) |
|
| 47 | 46 6 | expcld | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> ( A ^ n ) e. CC ) |
| 48 | nnne0 | |- ( n e. NN -> n =/= 0 ) |
|
| 49 | 48 | ad2antlr | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> n =/= 0 ) |
| 50 | 47 30 49 | divcld | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> ( ( A ^ n ) / n ) e. CC ) |
| 51 | 50 | mul02d | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> ( 0 x. ( ( A ^ n ) / n ) ) = 0 ) |
| 52 | 45 51 | eqtr2d | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ 2 || n ) -> 0 = ( ( ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) / 2 ) x. ( ( A ^ n ) / n ) ) ) |
| 53 | 2cnd | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> 2 e. CC ) |
|
| 54 | ax-1cn | |- 1 e. CC |
|
| 55 | 54 | negcli | |- -u 1 e. CC |
| 56 | 55 | a1i | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> -u 1 e. CC ) |
| 57 | neg1ne0 | |- -u 1 =/= 0 |
|
| 58 | 57 | a1i | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> -u 1 =/= 0 ) |
| 59 | 29 | ad2antlr | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> n e. CC ) |
| 60 | peano2cn | |- ( n e. CC -> ( n + 1 ) e. CC ) |
|
| 61 | 59 60 | syl | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( n + 1 ) e. CC ) |
| 62 | 16 | a1i | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> 2 =/= 0 ) |
| 63 | 61 53 53 62 | divsubdird | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( ( ( n + 1 ) - 2 ) / 2 ) = ( ( ( n + 1 ) / 2 ) - ( 2 / 2 ) ) ) |
| 64 | 2div2e1 | |- ( 2 / 2 ) = 1 |
|
| 65 | 64 | oveq2i | |- ( ( ( n + 1 ) / 2 ) - ( 2 / 2 ) ) = ( ( ( n + 1 ) / 2 ) - 1 ) |
| 66 | 63 65 | eqtrdi | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( ( ( n + 1 ) - 2 ) / 2 ) = ( ( ( n + 1 ) / 2 ) - 1 ) ) |
| 67 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 68 | 67 | oveq2i | |- ( ( n + 1 ) - 2 ) = ( ( n + 1 ) - ( 1 + 1 ) ) |
| 69 | 54 | a1i | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> 1 e. CC ) |
| 70 | 59 69 69 | pnpcan2d | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( ( n + 1 ) - ( 1 + 1 ) ) = ( n - 1 ) ) |
| 71 | 68 70 | eqtrid | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( ( n + 1 ) - 2 ) = ( n - 1 ) ) |
| 72 | 71 | oveq1d | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( ( ( n + 1 ) - 2 ) / 2 ) = ( ( n - 1 ) / 2 ) ) |
| 73 | 66 72 | eqtr3d | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( ( ( n + 1 ) / 2 ) - 1 ) = ( ( n - 1 ) / 2 ) ) |
| 74 | 20 | notbid | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) -> ( -. 2 || n <-> -. ( n / 2 ) e. ZZ ) ) |
| 75 | zeo | |- ( n e. ZZ -> ( ( n / 2 ) e. ZZ \/ ( ( n + 1 ) / 2 ) e. ZZ ) ) |
|
| 76 | 18 75 | syl | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) -> ( ( n / 2 ) e. ZZ \/ ( ( n + 1 ) / 2 ) e. ZZ ) ) |
| 77 | 76 | ord | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) -> ( -. ( n / 2 ) e. ZZ -> ( ( n + 1 ) / 2 ) e. ZZ ) ) |
| 78 | 74 77 | sylbid | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) -> ( -. 2 || n -> ( ( n + 1 ) / 2 ) e. ZZ ) ) |
| 79 | 78 | imp | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( ( n + 1 ) / 2 ) e. ZZ ) |
| 80 | peano2zm | |- ( ( ( n + 1 ) / 2 ) e. ZZ -> ( ( ( n + 1 ) / 2 ) - 1 ) e. ZZ ) |
|
| 81 | 79 80 | syl | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( ( ( n + 1 ) / 2 ) - 1 ) e. ZZ ) |
| 82 | 73 81 | eqeltrrd | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( ( n - 1 ) / 2 ) e. ZZ ) |
| 83 | 56 58 82 | expclzd | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( -u 1 ^ ( ( n - 1 ) / 2 ) ) e. CC ) |
| 84 | 83 | 2timesd | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( 2 x. ( -u 1 ^ ( ( n - 1 ) / 2 ) ) ) = ( ( -u 1 ^ ( ( n - 1 ) / 2 ) ) + ( -u 1 ^ ( ( n - 1 ) / 2 ) ) ) ) |
| 85 | subcl | |- ( ( n e. CC /\ 1 e. CC ) -> ( n - 1 ) e. CC ) |
|
| 86 | 59 54 85 | sylancl | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( n - 1 ) e. CC ) |
| 87 | 86 53 62 | divcan2d | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( 2 x. ( ( n - 1 ) / 2 ) ) = ( n - 1 ) ) |
| 88 | 87 | oveq2d | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( -u _i ^ ( 2 x. ( ( n - 1 ) / 2 ) ) ) = ( -u _i ^ ( n - 1 ) ) ) |
| 89 | 3 | a1i | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> -u _i e. CC ) |
| 90 | 12 | a1i | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> -u _i =/= 0 ) |
| 91 | 17 | ad2antlr | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> n e. ZZ ) |
| 92 | 89 90 91 | expm1d | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( -u _i ^ ( n - 1 ) ) = ( ( -u _i ^ n ) / -u _i ) ) |
| 93 | 88 92 | eqtrd | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( -u _i ^ ( 2 x. ( ( n - 1 ) / 2 ) ) ) = ( ( -u _i ^ n ) / -u _i ) ) |
| 94 | 14 | a1i | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> 2 e. ZZ ) |
| 95 | expmulz | |- ( ( ( -u _i e. CC /\ -u _i =/= 0 ) /\ ( 2 e. ZZ /\ ( ( n - 1 ) / 2 ) e. ZZ ) ) -> ( -u _i ^ ( 2 x. ( ( n - 1 ) / 2 ) ) ) = ( ( -u _i ^ 2 ) ^ ( ( n - 1 ) / 2 ) ) ) |
|
| 96 | 89 90 94 82 95 | syl22anc | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( -u _i ^ ( 2 x. ( ( n - 1 ) / 2 ) ) ) = ( ( -u _i ^ 2 ) ^ ( ( n - 1 ) / 2 ) ) ) |
| 97 | 5 | ad2antlr | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> n e. NN0 ) |
| 98 | expcl | |- ( ( -u _i e. CC /\ n e. NN0 ) -> ( -u _i ^ n ) e. CC ) |
|
| 99 | 3 97 98 | sylancr | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( -u _i ^ n ) e. CC ) |
| 100 | 99 89 90 | divrec2d | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( ( -u _i ^ n ) / -u _i ) = ( ( 1 / -u _i ) x. ( -u _i ^ n ) ) ) |
| 101 | 93 96 100 | 3eqtr3d | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( ( -u _i ^ 2 ) ^ ( ( n - 1 ) / 2 ) ) = ( ( 1 / -u _i ) x. ( -u _i ^ n ) ) ) |
| 102 | i2 | |- ( _i ^ 2 ) = -u 1 |
|
| 103 | 9 102 | eqtri | |- ( -u _i ^ 2 ) = -u 1 |
| 104 | 103 | oveq1i | |- ( ( -u _i ^ 2 ) ^ ( ( n - 1 ) / 2 ) ) = ( -u 1 ^ ( ( n - 1 ) / 2 ) ) |
| 105 | irec | |- ( 1 / _i ) = -u _i |
|
| 106 | 105 | negeqi | |- -u ( 1 / _i ) = -u -u _i |
| 107 | divneg2 | |- ( ( 1 e. CC /\ _i e. CC /\ _i =/= 0 ) -> -u ( 1 / _i ) = ( 1 / -u _i ) ) |
|
| 108 | 54 2 11 107 | mp3an | |- -u ( 1 / _i ) = ( 1 / -u _i ) |
| 109 | 2 | negnegi | |- -u -u _i = _i |
| 110 | 106 108 109 | 3eqtr3i | |- ( 1 / -u _i ) = _i |
| 111 | 110 | oveq1i | |- ( ( 1 / -u _i ) x. ( -u _i ^ n ) ) = ( _i x. ( -u _i ^ n ) ) |
| 112 | 101 104 111 | 3eqtr3g | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( -u 1 ^ ( ( n - 1 ) / 2 ) ) = ( _i x. ( -u _i ^ n ) ) ) |
| 113 | 87 | oveq2d | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( _i ^ ( 2 x. ( ( n - 1 ) / 2 ) ) ) = ( _i ^ ( n - 1 ) ) ) |
| 114 | 2 | a1i | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> _i e. CC ) |
| 115 | 11 | a1i | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> _i =/= 0 ) |
| 116 | 114 115 91 | expm1d | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( _i ^ ( n - 1 ) ) = ( ( _i ^ n ) / _i ) ) |
| 117 | 113 116 | eqtrd | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( _i ^ ( 2 x. ( ( n - 1 ) / 2 ) ) ) = ( ( _i ^ n ) / _i ) ) |
| 118 | expmulz | |- ( ( ( _i e. CC /\ _i =/= 0 ) /\ ( 2 e. ZZ /\ ( ( n - 1 ) / 2 ) e. ZZ ) ) -> ( _i ^ ( 2 x. ( ( n - 1 ) / 2 ) ) ) = ( ( _i ^ 2 ) ^ ( ( n - 1 ) / 2 ) ) ) |
|
| 119 | 114 115 94 82 118 | syl22anc | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( _i ^ ( 2 x. ( ( n - 1 ) / 2 ) ) ) = ( ( _i ^ 2 ) ^ ( ( n - 1 ) / 2 ) ) ) |
| 120 | expcl | |- ( ( _i e. CC /\ n e. NN0 ) -> ( _i ^ n ) e. CC ) |
|
| 121 | 2 97 120 | sylancr | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( _i ^ n ) e. CC ) |
| 122 | 121 114 115 | divrec2d | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( ( _i ^ n ) / _i ) = ( ( 1 / _i ) x. ( _i ^ n ) ) ) |
| 123 | 117 119 122 | 3eqtr3d | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( ( _i ^ 2 ) ^ ( ( n - 1 ) / 2 ) ) = ( ( 1 / _i ) x. ( _i ^ n ) ) ) |
| 124 | 102 | oveq1i | |- ( ( _i ^ 2 ) ^ ( ( n - 1 ) / 2 ) ) = ( -u 1 ^ ( ( n - 1 ) / 2 ) ) |
| 125 | 105 | oveq1i | |- ( ( 1 / _i ) x. ( _i ^ n ) ) = ( -u _i x. ( _i ^ n ) ) |
| 126 | 123 124 125 | 3eqtr3g | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( -u 1 ^ ( ( n - 1 ) / 2 ) ) = ( -u _i x. ( _i ^ n ) ) ) |
| 127 | mulneg1 | |- ( ( _i e. CC /\ ( _i ^ n ) e. CC ) -> ( -u _i x. ( _i ^ n ) ) = -u ( _i x. ( _i ^ n ) ) ) |
|
| 128 | 2 121 127 | sylancr | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( -u _i x. ( _i ^ n ) ) = -u ( _i x. ( _i ^ n ) ) ) |
| 129 | 126 128 | eqtrd | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( -u 1 ^ ( ( n - 1 ) / 2 ) ) = -u ( _i x. ( _i ^ n ) ) ) |
| 130 | 112 129 | oveq12d | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( ( -u 1 ^ ( ( n - 1 ) / 2 ) ) + ( -u 1 ^ ( ( n - 1 ) / 2 ) ) ) = ( ( _i x. ( -u _i ^ n ) ) + -u ( _i x. ( _i ^ n ) ) ) ) |
| 131 | mulcl | |- ( ( _i e. CC /\ ( -u _i ^ n ) e. CC ) -> ( _i x. ( -u _i ^ n ) ) e. CC ) |
|
| 132 | 2 99 131 | sylancr | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( _i x. ( -u _i ^ n ) ) e. CC ) |
| 133 | mulcl | |- ( ( _i e. CC /\ ( _i ^ n ) e. CC ) -> ( _i x. ( _i ^ n ) ) e. CC ) |
|
| 134 | 2 121 133 | sylancr | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( _i x. ( _i ^ n ) ) e. CC ) |
| 135 | 132 134 | negsubd | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( ( _i x. ( -u _i ^ n ) ) + -u ( _i x. ( _i ^ n ) ) ) = ( ( _i x. ( -u _i ^ n ) ) - ( _i x. ( _i ^ n ) ) ) ) |
| 136 | 114 99 121 | subdid | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) = ( ( _i x. ( -u _i ^ n ) ) - ( _i x. ( _i ^ n ) ) ) ) |
| 137 | 135 136 | eqtr4d | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( ( _i x. ( -u _i ^ n ) ) + -u ( _i x. ( _i ^ n ) ) ) = ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) ) |
| 138 | 84 130 137 | 3eqtrd | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( 2 x. ( -u 1 ^ ( ( n - 1 ) / 2 ) ) ) = ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) ) |
| 139 | 53 83 62 138 | mvllmuld | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( -u 1 ^ ( ( n - 1 ) / 2 ) ) = ( ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) / 2 ) ) |
| 140 | 139 | oveq1d | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) /\ -. 2 || n ) -> ( ( -u 1 ^ ( ( n - 1 ) / 2 ) ) x. ( ( A ^ n ) / n ) ) = ( ( ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) / 2 ) x. ( ( A ^ n ) / n ) ) ) |
| 141 | 52 140 | ifeqda | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) -> if ( 2 || n , 0 , ( ( -u 1 ^ ( ( n - 1 ) / 2 ) ) x. ( ( A ^ n ) / n ) ) ) = ( ( ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) / 2 ) x. ( ( A ^ n ) / n ) ) ) |
| 142 | 141 | mpteq2dva | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( n e. NN |-> if ( 2 || n , 0 , ( ( -u 1 ^ ( ( n - 1 ) / 2 ) ) x. ( ( A ^ n ) / n ) ) ) ) = ( n e. NN |-> ( ( ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) / 2 ) x. ( ( A ^ n ) / n ) ) ) ) |
| 143 | 1 142 | eqtrid | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> F = ( n e. NN |-> ( ( ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) / 2 ) x. ( ( A ^ n ) / n ) ) ) ) |
| 144 | 143 | seqeq3d | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 1 ( + , F ) = seq 1 ( + , ( n e. NN |-> ( ( ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) / 2 ) x. ( ( A ^ n ) / n ) ) ) ) ) |
| 145 | eqid | |- ( n e. NN |-> ( ( ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) / 2 ) x. ( ( A ^ n ) / n ) ) ) = ( n e. NN |-> ( ( ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) / 2 ) x. ( ( A ^ n ) / n ) ) ) |
|
| 146 | 145 | atantayl | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 1 ( + , ( n e. NN |-> ( ( ( _i x. ( ( -u _i ^ n ) - ( _i ^ n ) ) ) / 2 ) x. ( ( A ^ n ) / n ) ) ) ) ~~> ( arctan ` A ) ) |
| 147 | 144 146 | eqbrtrd | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 1 ( + , F ) ~~> ( arctan ` A ) ) |