This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Abel's theorem, restricted to the [ 0 , 1 ] interval. (Contributed by Mario Carneiro, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abelth2.1 | |- ( ph -> A : NN0 --> CC ) |
|
| abelth2.2 | |- ( ph -> seq 0 ( + , A ) e. dom ~~> ) |
||
| abelth2.3 | |- F = ( x e. ( 0 [,] 1 ) |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |
||
| Assertion | abelth2 | |- ( ph -> F e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abelth2.1 | |- ( ph -> A : NN0 --> CC ) |
|
| 2 | abelth2.2 | |- ( ph -> seq 0 ( + , A ) e. dom ~~> ) |
|
| 3 | abelth2.3 | |- F = ( x e. ( 0 [,] 1 ) |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |
|
| 4 | unitssre | |- ( 0 [,] 1 ) C_ RR |
|
| 5 | ax-resscn | |- RR C_ CC |
|
| 6 | 4 5 | sstri | |- ( 0 [,] 1 ) C_ CC |
| 7 | 6 | a1i | |- ( ph -> ( 0 [,] 1 ) C_ CC ) |
| 8 | 1re | |- 1 e. RR |
|
| 9 | simpr | |- ( ( ph /\ z e. ( 0 [,] 1 ) ) -> z e. ( 0 [,] 1 ) ) |
|
| 10 | elicc01 | |- ( z e. ( 0 [,] 1 ) <-> ( z e. RR /\ 0 <_ z /\ z <_ 1 ) ) |
|
| 11 | 9 10 | sylib | |- ( ( ph /\ z e. ( 0 [,] 1 ) ) -> ( z e. RR /\ 0 <_ z /\ z <_ 1 ) ) |
| 12 | 11 | simp1d | |- ( ( ph /\ z e. ( 0 [,] 1 ) ) -> z e. RR ) |
| 13 | resubcl | |- ( ( 1 e. RR /\ z e. RR ) -> ( 1 - z ) e. RR ) |
|
| 14 | 8 12 13 | sylancr | |- ( ( ph /\ z e. ( 0 [,] 1 ) ) -> ( 1 - z ) e. RR ) |
| 15 | 14 | leidd | |- ( ( ph /\ z e. ( 0 [,] 1 ) ) -> ( 1 - z ) <_ ( 1 - z ) ) |
| 16 | 1red | |- ( ( ph /\ z e. ( 0 [,] 1 ) ) -> 1 e. RR ) |
|
| 17 | 11 | simp3d | |- ( ( ph /\ z e. ( 0 [,] 1 ) ) -> z <_ 1 ) |
| 18 | 12 16 17 | abssubge0d | |- ( ( ph /\ z e. ( 0 [,] 1 ) ) -> ( abs ` ( 1 - z ) ) = ( 1 - z ) ) |
| 19 | 11 | simp2d | |- ( ( ph /\ z e. ( 0 [,] 1 ) ) -> 0 <_ z ) |
| 20 | 12 19 | absidd | |- ( ( ph /\ z e. ( 0 [,] 1 ) ) -> ( abs ` z ) = z ) |
| 21 | 20 | oveq2d | |- ( ( ph /\ z e. ( 0 [,] 1 ) ) -> ( 1 - ( abs ` z ) ) = ( 1 - z ) ) |
| 22 | 21 | oveq2d | |- ( ( ph /\ z e. ( 0 [,] 1 ) ) -> ( 1 x. ( 1 - ( abs ` z ) ) ) = ( 1 x. ( 1 - z ) ) ) |
| 23 | 14 | recnd | |- ( ( ph /\ z e. ( 0 [,] 1 ) ) -> ( 1 - z ) e. CC ) |
| 24 | 23 | mullidd | |- ( ( ph /\ z e. ( 0 [,] 1 ) ) -> ( 1 x. ( 1 - z ) ) = ( 1 - z ) ) |
| 25 | 22 24 | eqtrd | |- ( ( ph /\ z e. ( 0 [,] 1 ) ) -> ( 1 x. ( 1 - ( abs ` z ) ) ) = ( 1 - z ) ) |
| 26 | 15 18 25 | 3brtr4d | |- ( ( ph /\ z e. ( 0 [,] 1 ) ) -> ( abs ` ( 1 - z ) ) <_ ( 1 x. ( 1 - ( abs ` z ) ) ) ) |
| 27 | 7 26 | ssrabdv | |- ( ph -> ( 0 [,] 1 ) C_ { z e. CC | ( abs ` ( 1 - z ) ) <_ ( 1 x. ( 1 - ( abs ` z ) ) ) } ) |
| 28 | 27 | resmptd | |- ( ph -> ( ( x e. { z e. CC | ( abs ` ( 1 - z ) ) <_ ( 1 x. ( 1 - ( abs ` z ) ) ) } |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |` ( 0 [,] 1 ) ) = ( x e. ( 0 [,] 1 ) |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) ) |
| 29 | 28 3 | eqtr4di | |- ( ph -> ( ( x e. { z e. CC | ( abs ` ( 1 - z ) ) <_ ( 1 x. ( 1 - ( abs ` z ) ) ) } |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |` ( 0 [,] 1 ) ) = F ) |
| 30 | 1red | |- ( ph -> 1 e. RR ) |
|
| 31 | 0le1 | |- 0 <_ 1 |
|
| 32 | 31 | a1i | |- ( ph -> 0 <_ 1 ) |
| 33 | eqid | |- { z e. CC | ( abs ` ( 1 - z ) ) <_ ( 1 x. ( 1 - ( abs ` z ) ) ) } = { z e. CC | ( abs ` ( 1 - z ) ) <_ ( 1 x. ( 1 - ( abs ` z ) ) ) } |
|
| 34 | eqid | |- ( x e. { z e. CC | ( abs ` ( 1 - z ) ) <_ ( 1 x. ( 1 - ( abs ` z ) ) ) } |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) = ( x e. { z e. CC | ( abs ` ( 1 - z ) ) <_ ( 1 x. ( 1 - ( abs ` z ) ) ) } |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |
|
| 35 | 1 2 30 32 33 34 | abelth | |- ( ph -> ( x e. { z e. CC | ( abs ` ( 1 - z ) ) <_ ( 1 x. ( 1 - ( abs ` z ) ) ) } |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) e. ( { z e. CC | ( abs ` ( 1 - z ) ) <_ ( 1 x. ( 1 - ( abs ` z ) ) ) } -cn-> CC ) ) |
| 36 | rescncf | |- ( ( 0 [,] 1 ) C_ { z e. CC | ( abs ` ( 1 - z ) ) <_ ( 1 x. ( 1 - ( abs ` z ) ) ) } -> ( ( x e. { z e. CC | ( abs ` ( 1 - z ) ) <_ ( 1 x. ( 1 - ( abs ` z ) ) ) } |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) e. ( { z e. CC | ( abs ` ( 1 - z ) ) <_ ( 1 x. ( 1 - ( abs ` z ) ) ) } -cn-> CC ) -> ( ( x e. { z e. CC | ( abs ` ( 1 - z ) ) <_ ( 1 x. ( 1 - ( abs ` z ) ) ) } |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |` ( 0 [,] 1 ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) ) |
|
| 37 | 27 35 36 | sylc | |- ( ph -> ( ( x e. { z e. CC | ( abs ` ( 1 - z ) ) <_ ( 1 x. ( 1 - ( abs ` z ) ) ) } |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |` ( 0 [,] 1 ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 38 | 29 37 | eqeltrrd | |- ( ph -> F e. ( ( 0 [,] 1 ) -cn-> CC ) ) |