This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The arctangent is a continuous function. (Contributed by Mario Carneiro, 7-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atansopn.d | |- D = ( CC \ ( -oo (,] 0 ) ) |
|
| atansopn.s | |- S = { y e. CC | ( 1 + ( y ^ 2 ) ) e. D } |
||
| Assertion | atancn | |- ( arctan |` S ) e. ( S -cn-> CC ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atansopn.d | |- D = ( CC \ ( -oo (,] 0 ) ) |
|
| 2 | atansopn.s | |- S = { y e. CC | ( 1 + ( y ^ 2 ) ) e. D } |
|
| 3 | ssid | |- CC C_ CC |
|
| 4 | atanf | |- arctan : ( CC \ { -u _i , _i } ) --> CC |
|
| 5 | 1 2 | atansssdm | |- S C_ dom arctan |
| 6 | 4 | fdmi | |- dom arctan = ( CC \ { -u _i , _i } ) |
| 7 | 5 6 | sseqtri | |- S C_ ( CC \ { -u _i , _i } ) |
| 8 | fssres | |- ( ( arctan : ( CC \ { -u _i , _i } ) --> CC /\ S C_ ( CC \ { -u _i , _i } ) ) -> ( arctan |` S ) : S --> CC ) |
|
| 9 | 4 7 8 | mp2an | |- ( arctan |` S ) : S --> CC |
| 10 | 2 | ssrab3 | |- S C_ CC |
| 11 | ovex | |- ( 1 / ( 1 + ( x ^ 2 ) ) ) e. _V |
|
| 12 | 1 2 | dvatan | |- ( CC _D ( arctan |` S ) ) = ( x e. S |-> ( 1 / ( 1 + ( x ^ 2 ) ) ) ) |
| 13 | 11 12 | dmmpti | |- dom ( CC _D ( arctan |` S ) ) = S |
| 14 | dvcn | |- ( ( ( CC C_ CC /\ ( arctan |` S ) : S --> CC /\ S C_ CC ) /\ dom ( CC _D ( arctan |` S ) ) = S ) -> ( arctan |` S ) e. ( S -cn-> CC ) ) |
|
| 15 | 13 14 | mpan2 | |- ( ( CC C_ CC /\ ( arctan |` S ) : S --> CC /\ S C_ CC ) -> ( arctan |` S ) e. ( S -cn-> CC ) ) |
| 16 | 3 9 10 15 | mp3an | |- ( arctan |` S ) e. ( S -cn-> CC ) |