This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complex function with derivative bounded by M on an open ball is M-Lipschitz continuous. (Contributed by Mario Carneiro, 18-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvlipcn.x | |- ( ph -> X C_ CC ) |
|
| dvlipcn.f | |- ( ph -> F : X --> CC ) |
||
| dvlipcn.a | |- ( ph -> A e. CC ) |
||
| dvlipcn.r | |- ( ph -> R e. RR* ) |
||
| dvlipcn.b | |- B = ( A ( ball ` ( abs o. - ) ) R ) |
||
| dvlipcn.d | |- ( ph -> B C_ dom ( CC _D F ) ) |
||
| dvlipcn.m | |- ( ph -> M e. RR ) |
||
| dvlipcn.l | |- ( ( ph /\ x e. B ) -> ( abs ` ( ( CC _D F ) ` x ) ) <_ M ) |
||
| Assertion | dvlipcn | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvlipcn.x | |- ( ph -> X C_ CC ) |
|
| 2 | dvlipcn.f | |- ( ph -> F : X --> CC ) |
|
| 3 | dvlipcn.a | |- ( ph -> A e. CC ) |
|
| 4 | dvlipcn.r | |- ( ph -> R e. RR* ) |
|
| 5 | dvlipcn.b | |- B = ( A ( ball ` ( abs o. - ) ) R ) |
|
| 6 | dvlipcn.d | |- ( ph -> B C_ dom ( CC _D F ) ) |
|
| 7 | dvlipcn.m | |- ( ph -> M e. RR ) |
|
| 8 | dvlipcn.l | |- ( ( ph /\ x e. B ) -> ( abs ` ( ( CC _D F ) ` x ) ) <_ M ) |
|
| 9 | 1elunit | |- 1 e. ( 0 [,] 1 ) |
|
| 10 | 0elunit | |- 0 e. ( 0 [,] 1 ) |
|
| 11 | 0red | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> 0 e. RR ) |
|
| 12 | 1red | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> 1 e. RR ) |
|
| 13 | ssidd | |- ( ph -> CC C_ CC ) |
|
| 14 | 13 2 1 | dvbss | |- ( ph -> dom ( CC _D F ) C_ X ) |
| 15 | 6 14 | sstrd | |- ( ph -> B C_ X ) |
| 16 | 15 1 | sstrd | |- ( ph -> B C_ CC ) |
| 17 | 16 | adantr | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> B C_ CC ) |
| 18 | simprl | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> Y e. B ) |
|
| 19 | 17 18 | sseldd | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> Y e. CC ) |
| 20 | 19 | adantr | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 [,] 1 ) ) -> Y e. CC ) |
| 21 | unitssre | |- ( 0 [,] 1 ) C_ RR |
|
| 22 | ax-resscn | |- RR C_ CC |
|
| 23 | 21 22 | sstri | |- ( 0 [,] 1 ) C_ CC |
| 24 | simpr | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 [,] 1 ) ) -> t e. ( 0 [,] 1 ) ) |
|
| 25 | 23 24 | sselid | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 [,] 1 ) ) -> t e. CC ) |
| 26 | 20 25 | mulcomd | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 [,] 1 ) ) -> ( Y x. t ) = ( t x. Y ) ) |
| 27 | simprr | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> Z e. B ) |
|
| 28 | 17 27 | sseldd | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> Z e. CC ) |
| 29 | 28 | adantr | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 [,] 1 ) ) -> Z e. CC ) |
| 30 | iirev | |- ( t e. ( 0 [,] 1 ) -> ( 1 - t ) e. ( 0 [,] 1 ) ) |
|
| 31 | 30 | adantl | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 [,] 1 ) ) -> ( 1 - t ) e. ( 0 [,] 1 ) ) |
| 32 | 23 31 | sselid | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 [,] 1 ) ) -> ( 1 - t ) e. CC ) |
| 33 | 29 32 | mulcomd | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 [,] 1 ) ) -> ( Z x. ( 1 - t ) ) = ( ( 1 - t ) x. Z ) ) |
| 34 | 26 33 | oveq12d | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 [,] 1 ) ) -> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) = ( ( t x. Y ) + ( ( 1 - t ) x. Z ) ) ) |
| 35 | 3 | ad2antrr | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 [,] 1 ) ) -> A e. CC ) |
| 36 | 4 | ad2antrr | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 [,] 1 ) ) -> R e. RR* ) |
| 37 | 18 | adantr | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 [,] 1 ) ) -> Y e. B ) |
| 38 | 27 | adantr | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 [,] 1 ) ) -> Z e. B ) |
| 39 | 5 | blcvx | |- ( ( ( A e. CC /\ R e. RR* ) /\ ( Y e. B /\ Z e. B /\ t e. ( 0 [,] 1 ) ) ) -> ( ( t x. Y ) + ( ( 1 - t ) x. Z ) ) e. B ) |
| 40 | 35 36 37 38 24 39 | syl23anc | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 [,] 1 ) ) -> ( ( t x. Y ) + ( ( 1 - t ) x. Z ) ) e. B ) |
| 41 | 34 40 | eqeltrd | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 [,] 1 ) ) -> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) e. B ) |
| 42 | eqidd | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( t e. ( 0 [,] 1 ) |-> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) = ( t e. ( 0 [,] 1 ) |-> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) |
|
| 43 | 2 15 | fssresd | |- ( ph -> ( F |` B ) : B --> CC ) |
| 44 | 43 | feqmptd | |- ( ph -> ( F |` B ) = ( z e. B |-> ( ( F |` B ) ` z ) ) ) |
| 45 | fvres | |- ( z e. B -> ( ( F |` B ) ` z ) = ( F ` z ) ) |
|
| 46 | 45 | mpteq2ia | |- ( z e. B |-> ( ( F |` B ) ` z ) ) = ( z e. B |-> ( F ` z ) ) |
| 47 | 44 46 | eqtrdi | |- ( ph -> ( F |` B ) = ( z e. B |-> ( F ` z ) ) ) |
| 48 | 47 | adantr | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( F |` B ) = ( z e. B |-> ( F ` z ) ) ) |
| 49 | fveq2 | |- ( z = ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) -> ( F ` z ) = ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) |
|
| 50 | 41 42 48 49 | fmptco | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( F |` B ) o. ( t e. ( 0 [,] 1 ) |-> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) = ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) |
| 51 | 41 | fmpttd | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( t e. ( 0 [,] 1 ) |-> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) : ( 0 [,] 1 ) --> B ) |
| 52 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 53 | 52 | addcn | |- + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 54 | 53 | a1i | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 55 | ssid | |- CC C_ CC |
|
| 56 | cncfmptc | |- ( ( Y e. CC /\ ( 0 [,] 1 ) C_ CC /\ CC C_ CC ) -> ( t e. ( 0 [,] 1 ) |-> Y ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
|
| 57 | 23 55 56 | mp3an23 | |- ( Y e. CC -> ( t e. ( 0 [,] 1 ) |-> Y ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 58 | 19 57 | syl | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( t e. ( 0 [,] 1 ) |-> Y ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 59 | cncfmptid | |- ( ( ( 0 [,] 1 ) C_ CC /\ CC C_ CC ) -> ( t e. ( 0 [,] 1 ) |-> t ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
|
| 60 | 23 55 59 | mp2an | |- ( t e. ( 0 [,] 1 ) |-> t ) e. ( ( 0 [,] 1 ) -cn-> CC ) |
| 61 | 60 | a1i | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( t e. ( 0 [,] 1 ) |-> t ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 62 | 58 61 | mulcncf | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( t e. ( 0 [,] 1 ) |-> ( Y x. t ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 63 | cncfmptc | |- ( ( Z e. CC /\ ( 0 [,] 1 ) C_ CC /\ CC C_ CC ) -> ( t e. ( 0 [,] 1 ) |-> Z ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
|
| 64 | 23 55 63 | mp3an23 | |- ( Z e. CC -> ( t e. ( 0 [,] 1 ) |-> Z ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 65 | 28 64 | syl | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( t e. ( 0 [,] 1 ) |-> Z ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 66 | 52 | subcn | |- - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 67 | 66 | a1i | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 68 | ax-1cn | |- 1 e. CC |
|
| 69 | cncfmptc | |- ( ( 1 e. CC /\ ( 0 [,] 1 ) C_ CC /\ CC C_ CC ) -> ( t e. ( 0 [,] 1 ) |-> 1 ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
|
| 70 | 68 23 55 69 | mp3an | |- ( t e. ( 0 [,] 1 ) |-> 1 ) e. ( ( 0 [,] 1 ) -cn-> CC ) |
| 71 | 70 | a1i | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( t e. ( 0 [,] 1 ) |-> 1 ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 72 | 52 67 71 61 | cncfmpt2f | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( t e. ( 0 [,] 1 ) |-> ( 1 - t ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 73 | 65 72 | mulcncf | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( t e. ( 0 [,] 1 ) |-> ( Z x. ( 1 - t ) ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 74 | 52 54 62 73 | cncfmpt2f | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( t e. ( 0 [,] 1 ) |-> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 75 | cncfcdm | |- ( ( B C_ CC /\ ( t e. ( 0 [,] 1 ) |-> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) -> ( ( t e. ( 0 [,] 1 ) |-> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) e. ( ( 0 [,] 1 ) -cn-> B ) <-> ( t e. ( 0 [,] 1 ) |-> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) : ( 0 [,] 1 ) --> B ) ) |
|
| 76 | 17 74 75 | syl2anc | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( t e. ( 0 [,] 1 ) |-> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) e. ( ( 0 [,] 1 ) -cn-> B ) <-> ( t e. ( 0 [,] 1 ) |-> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) : ( 0 [,] 1 ) --> B ) ) |
| 77 | 51 76 | mpbird | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( t e. ( 0 [,] 1 ) |-> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) e. ( ( 0 [,] 1 ) -cn-> B ) ) |
| 78 | ssidd | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> CC C_ CC ) |
|
| 79 | 43 | adantr | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( F |` B ) : B --> CC ) |
| 80 | 52 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 81 | 80 | toponrestid | |- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 82 | 52 81 | dvres | |- ( ( ( CC C_ CC /\ F : X --> CC ) /\ ( X C_ CC /\ B C_ CC ) ) -> ( CC _D ( F |` B ) ) = ( ( CC _D F ) |` ( ( int ` ( TopOpen ` CCfld ) ) ` B ) ) ) |
| 83 | 13 2 1 16 82 | syl22anc | |- ( ph -> ( CC _D ( F |` B ) ) = ( ( CC _D F ) |` ( ( int ` ( TopOpen ` CCfld ) ) ` B ) ) ) |
| 84 | 52 | cnfldtop | |- ( TopOpen ` CCfld ) e. Top |
| 85 | cnxmet | |- ( abs o. - ) e. ( *Met ` CC ) |
|
| 86 | 52 | cnfldtopn | |- ( TopOpen ` CCfld ) = ( MetOpen ` ( abs o. - ) ) |
| 87 | 86 | blopn | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ A e. CC /\ R e. RR* ) -> ( A ( ball ` ( abs o. - ) ) R ) e. ( TopOpen ` CCfld ) ) |
| 88 | 85 3 4 87 | mp3an2i | |- ( ph -> ( A ( ball ` ( abs o. - ) ) R ) e. ( TopOpen ` CCfld ) ) |
| 89 | 5 88 | eqeltrid | |- ( ph -> B e. ( TopOpen ` CCfld ) ) |
| 90 | isopn3i | |- ( ( ( TopOpen ` CCfld ) e. Top /\ B e. ( TopOpen ` CCfld ) ) -> ( ( int ` ( TopOpen ` CCfld ) ) ` B ) = B ) |
|
| 91 | 84 89 90 | sylancr | |- ( ph -> ( ( int ` ( TopOpen ` CCfld ) ) ` B ) = B ) |
| 92 | 91 | reseq2d | |- ( ph -> ( ( CC _D F ) |` ( ( int ` ( TopOpen ` CCfld ) ) ` B ) ) = ( ( CC _D F ) |` B ) ) |
| 93 | 83 92 | eqtrd | |- ( ph -> ( CC _D ( F |` B ) ) = ( ( CC _D F ) |` B ) ) |
| 94 | 93 | dmeqd | |- ( ph -> dom ( CC _D ( F |` B ) ) = dom ( ( CC _D F ) |` B ) ) |
| 95 | dmres | |- dom ( ( CC _D F ) |` B ) = ( B i^i dom ( CC _D F ) ) |
|
| 96 | dfss2 | |- ( B C_ dom ( CC _D F ) <-> ( B i^i dom ( CC _D F ) ) = B ) |
|
| 97 | 6 96 | sylib | |- ( ph -> ( B i^i dom ( CC _D F ) ) = B ) |
| 98 | 95 97 | eqtrid | |- ( ph -> dom ( ( CC _D F ) |` B ) = B ) |
| 99 | 94 98 | eqtrd | |- ( ph -> dom ( CC _D ( F |` B ) ) = B ) |
| 100 | 99 | adantr | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> dom ( CC _D ( F |` B ) ) = B ) |
| 101 | dvcn | |- ( ( ( CC C_ CC /\ ( F |` B ) : B --> CC /\ B C_ CC ) /\ dom ( CC _D ( F |` B ) ) = B ) -> ( F |` B ) e. ( B -cn-> CC ) ) |
|
| 102 | 78 79 17 100 101 | syl31anc | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( F |` B ) e. ( B -cn-> CC ) ) |
| 103 | 77 102 | cncfco | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( F |` B ) o. ( t e. ( 0 [,] 1 ) |-> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 104 | 50 103 | eqeltrrd | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 105 | 22 | a1i | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> RR C_ CC ) |
| 106 | 21 | a1i | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( 0 [,] 1 ) C_ RR ) |
| 107 | 2 | ad2antrr | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 [,] 1 ) ) -> F : X --> CC ) |
| 108 | 15 | ad2antrr | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 [,] 1 ) ) -> B C_ X ) |
| 109 | 108 41 | sseldd | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 [,] 1 ) ) -> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) e. X ) |
| 110 | 107 109 | ffvelcdmd | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 [,] 1 ) ) -> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) e. CC ) |
| 111 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 112 | 1re | |- 1 e. RR |
|
| 113 | iccntr | |- ( ( 0 e. RR /\ 1 e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] 1 ) ) = ( 0 (,) 1 ) ) |
|
| 114 | 11 112 113 | sylancl | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] 1 ) ) = ( 0 (,) 1 ) ) |
| 115 | 105 106 110 111 52 114 | dvmptntr | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) = ( RR _D ( t e. ( 0 (,) 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) ) |
| 116 | reelprrecn | |- RR e. { RR , CC } |
|
| 117 | 116 | a1i | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> RR e. { RR , CC } ) |
| 118 | cnelprrecn | |- CC e. { RR , CC } |
|
| 119 | 118 | a1i | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> CC e. { RR , CC } ) |
| 120 | ioossicc | |- ( 0 (,) 1 ) C_ ( 0 [,] 1 ) |
|
| 121 | 120 | sseli | |- ( t e. ( 0 (,) 1 ) -> t e. ( 0 [,] 1 ) ) |
| 122 | 121 41 | sylan2 | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) e. B ) |
| 123 | 19 28 | subcld | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( Y - Z ) e. CC ) |
| 124 | 123 | adantr | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> ( Y - Z ) e. CC ) |
| 125 | 15 | adantr | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> B C_ X ) |
| 126 | 125 | sselda | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ z e. B ) -> z e. X ) |
| 127 | 2 | adantr | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> F : X --> CC ) |
| 128 | 127 | ffvelcdmda | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ z e. X ) -> ( F ` z ) e. CC ) |
| 129 | 126 128 | syldan | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ z e. B ) -> ( F ` z ) e. CC ) |
| 130 | fvexd | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ z e. B ) -> ( ( CC _D F ) ` z ) e. _V ) |
|
| 131 | 19 | adantr | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> Y e. CC ) |
| 132 | 121 25 | sylan2 | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> t e. CC ) |
| 133 | 131 132 | mulcld | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> ( Y x. t ) e. CC ) |
| 134 | 1red | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> 1 e. RR ) |
|
| 135 | simpr | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. RR ) -> t e. RR ) |
|
| 136 | 135 | recnd | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. RR ) -> t e. CC ) |
| 137 | 1red | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. RR ) -> 1 e. RR ) |
|
| 138 | 117 | dvmptid | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( RR _D ( t e. RR |-> t ) ) = ( t e. RR |-> 1 ) ) |
| 139 | ioossre | |- ( 0 (,) 1 ) C_ RR |
|
| 140 | 139 | a1i | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( 0 (,) 1 ) C_ RR ) |
| 141 | iooretop | |- ( 0 (,) 1 ) e. ( topGen ` ran (,) ) |
|
| 142 | 141 | a1i | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( 0 (,) 1 ) e. ( topGen ` ran (,) ) ) |
| 143 | 117 136 137 138 140 111 52 142 | dvmptres | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( RR _D ( t e. ( 0 (,) 1 ) |-> t ) ) = ( t e. ( 0 (,) 1 ) |-> 1 ) ) |
| 144 | 117 132 134 143 19 | dvmptcmul | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( RR _D ( t e. ( 0 (,) 1 ) |-> ( Y x. t ) ) ) = ( t e. ( 0 (,) 1 ) |-> ( Y x. 1 ) ) ) |
| 145 | 19 | mulridd | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( Y x. 1 ) = Y ) |
| 146 | 145 | mpteq2dv | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( t e. ( 0 (,) 1 ) |-> ( Y x. 1 ) ) = ( t e. ( 0 (,) 1 ) |-> Y ) ) |
| 147 | 144 146 | eqtrd | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( RR _D ( t e. ( 0 (,) 1 ) |-> ( Y x. t ) ) ) = ( t e. ( 0 (,) 1 ) |-> Y ) ) |
| 148 | 28 | adantr | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> Z e. CC ) |
| 149 | 121 32 | sylan2 | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> ( 1 - t ) e. CC ) |
| 150 | 148 149 | mulcld | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> ( Z x. ( 1 - t ) ) e. CC ) |
| 151 | negex | |- -u Z e. _V |
|
| 152 | 151 | a1i | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> -u Z e. _V ) |
| 153 | negex | |- -u 1 e. _V |
|
| 154 | 153 | a1i | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> -u 1 e. _V ) |
| 155 | 1cnd | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> 1 e. CC ) |
|
| 156 | 0red | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> 0 e. RR ) |
|
| 157 | 1cnd | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. RR ) -> 1 e. CC ) |
|
| 158 | 0red | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. RR ) -> 0 e. RR ) |
|
| 159 | 1cnd | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> 1 e. CC ) |
|
| 160 | 117 159 | dvmptc | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( RR _D ( t e. RR |-> 1 ) ) = ( t e. RR |-> 0 ) ) |
| 161 | 117 157 158 160 140 111 52 142 | dvmptres | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( RR _D ( t e. ( 0 (,) 1 ) |-> 1 ) ) = ( t e. ( 0 (,) 1 ) |-> 0 ) ) |
| 162 | 117 155 156 161 132 134 143 | dvmptsub | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( RR _D ( t e. ( 0 (,) 1 ) |-> ( 1 - t ) ) ) = ( t e. ( 0 (,) 1 ) |-> ( 0 - 1 ) ) ) |
| 163 | df-neg | |- -u 1 = ( 0 - 1 ) |
|
| 164 | 163 | mpteq2i | |- ( t e. ( 0 (,) 1 ) |-> -u 1 ) = ( t e. ( 0 (,) 1 ) |-> ( 0 - 1 ) ) |
| 165 | 162 164 | eqtr4di | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( RR _D ( t e. ( 0 (,) 1 ) |-> ( 1 - t ) ) ) = ( t e. ( 0 (,) 1 ) |-> -u 1 ) ) |
| 166 | 117 149 154 165 28 | dvmptcmul | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( RR _D ( t e. ( 0 (,) 1 ) |-> ( Z x. ( 1 - t ) ) ) ) = ( t e. ( 0 (,) 1 ) |-> ( Z x. -u 1 ) ) ) |
| 167 | neg1cn | |- -u 1 e. CC |
|
| 168 | mulcom | |- ( ( Z e. CC /\ -u 1 e. CC ) -> ( Z x. -u 1 ) = ( -u 1 x. Z ) ) |
|
| 169 | 28 167 168 | sylancl | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( Z x. -u 1 ) = ( -u 1 x. Z ) ) |
| 170 | 28 | mulm1d | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( -u 1 x. Z ) = -u Z ) |
| 171 | 169 170 | eqtrd | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( Z x. -u 1 ) = -u Z ) |
| 172 | 171 | mpteq2dv | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( t e. ( 0 (,) 1 ) |-> ( Z x. -u 1 ) ) = ( t e. ( 0 (,) 1 ) |-> -u Z ) ) |
| 173 | 166 172 | eqtrd | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( RR _D ( t e. ( 0 (,) 1 ) |-> ( Z x. ( 1 - t ) ) ) ) = ( t e. ( 0 (,) 1 ) |-> -u Z ) ) |
| 174 | 117 133 131 147 150 152 173 | dvmptadd | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( RR _D ( t e. ( 0 (,) 1 ) |-> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) = ( t e. ( 0 (,) 1 ) |-> ( Y + -u Z ) ) ) |
| 175 | 19 28 | negsubd | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( Y + -u Z ) = ( Y - Z ) ) |
| 176 | 175 | mpteq2dv | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( t e. ( 0 (,) 1 ) |-> ( Y + -u Z ) ) = ( t e. ( 0 (,) 1 ) |-> ( Y - Z ) ) ) |
| 177 | 174 176 | eqtrd | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( RR _D ( t e. ( 0 (,) 1 ) |-> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) = ( t e. ( 0 (,) 1 ) |-> ( Y - Z ) ) ) |
| 178 | 1 | adantr | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> X C_ CC ) |
| 179 | 78 127 178 17 82 | syl22anc | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( CC _D ( F |` B ) ) = ( ( CC _D F ) |` ( ( int ` ( TopOpen ` CCfld ) ) ` B ) ) ) |
| 180 | 91 | adantr | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( int ` ( TopOpen ` CCfld ) ) ` B ) = B ) |
| 181 | 180 | reseq2d | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( CC _D F ) |` ( ( int ` ( TopOpen ` CCfld ) ) ` B ) ) = ( ( CC _D F ) |` B ) ) |
| 182 | 179 181 | eqtrd | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( CC _D ( F |` B ) ) = ( ( CC _D F ) |` B ) ) |
| 183 | 48 | oveq2d | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( CC _D ( F |` B ) ) = ( CC _D ( z e. B |-> ( F ` z ) ) ) ) |
| 184 | dvfcn | |- ( CC _D ( F |` B ) ) : dom ( CC _D ( F |` B ) ) --> CC |
|
| 185 | 100 | feq2d | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( CC _D ( F |` B ) ) : dom ( CC _D ( F |` B ) ) --> CC <-> ( CC _D ( F |` B ) ) : B --> CC ) ) |
| 186 | 184 185 | mpbii | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( CC _D ( F |` B ) ) : B --> CC ) |
| 187 | 182 | feq1d | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( CC _D ( F |` B ) ) : B --> CC <-> ( ( CC _D F ) |` B ) : B --> CC ) ) |
| 188 | 186 187 | mpbid | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( CC _D F ) |` B ) : B --> CC ) |
| 189 | 188 | feqmptd | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( CC _D F ) |` B ) = ( z e. B |-> ( ( ( CC _D F ) |` B ) ` z ) ) ) |
| 190 | fvres | |- ( z e. B -> ( ( ( CC _D F ) |` B ) ` z ) = ( ( CC _D F ) ` z ) ) |
|
| 191 | 190 | mpteq2ia | |- ( z e. B |-> ( ( ( CC _D F ) |` B ) ` z ) ) = ( z e. B |-> ( ( CC _D F ) ` z ) ) |
| 192 | 189 191 | eqtrdi | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( CC _D F ) |` B ) = ( z e. B |-> ( ( CC _D F ) ` z ) ) ) |
| 193 | 182 183 192 | 3eqtr3d | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( CC _D ( z e. B |-> ( F ` z ) ) ) = ( z e. B |-> ( ( CC _D F ) ` z ) ) ) |
| 194 | fveq2 | |- ( z = ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) -> ( ( CC _D F ) ` z ) = ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) |
|
| 195 | 117 119 122 124 129 130 177 193 49 194 | dvmptco | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( RR _D ( t e. ( 0 (,) 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) = ( t e. ( 0 (,) 1 ) |-> ( ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) x. ( Y - Z ) ) ) ) |
| 196 | 115 195 | eqtrd | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) = ( t e. ( 0 (,) 1 ) |-> ( ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) x. ( Y - Z ) ) ) ) |
| 197 | 196 | dmeqd | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> dom ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) = dom ( t e. ( 0 (,) 1 ) |-> ( ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) x. ( Y - Z ) ) ) ) |
| 198 | ovex | |- ( ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) x. ( Y - Z ) ) e. _V |
|
| 199 | 198 | rgenw | |- A. t e. ( 0 (,) 1 ) ( ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) x. ( Y - Z ) ) e. _V |
| 200 | dmmptg | |- ( A. t e. ( 0 (,) 1 ) ( ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) x. ( Y - Z ) ) e. _V -> dom ( t e. ( 0 (,) 1 ) |-> ( ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) x. ( Y - Z ) ) ) = ( 0 (,) 1 ) ) |
|
| 201 | 199 200 | mp1i | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> dom ( t e. ( 0 (,) 1 ) |-> ( ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) x. ( Y - Z ) ) ) = ( 0 (,) 1 ) ) |
| 202 | 197 201 | eqtrd | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> dom ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) = ( 0 (,) 1 ) ) |
| 203 | 7 | adantr | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> M e. RR ) |
| 204 | 123 | abscld | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( abs ` ( Y - Z ) ) e. RR ) |
| 205 | 203 204 | remulcld | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( M x. ( abs ` ( Y - Z ) ) ) e. RR ) |
| 206 | 196 | fveq1d | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) ` t ) = ( ( t e. ( 0 (,) 1 ) |-> ( ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) x. ( Y - Z ) ) ) ` t ) ) |
| 207 | eqid | |- ( t e. ( 0 (,) 1 ) |-> ( ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) x. ( Y - Z ) ) ) = ( t e. ( 0 (,) 1 ) |-> ( ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) x. ( Y - Z ) ) ) |
|
| 208 | 207 | fvmpt2 | |- ( ( t e. ( 0 (,) 1 ) /\ ( ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) x. ( Y - Z ) ) e. _V ) -> ( ( t e. ( 0 (,) 1 ) |-> ( ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) x. ( Y - Z ) ) ) ` t ) = ( ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) x. ( Y - Z ) ) ) |
| 209 | 198 208 | mpan2 | |- ( t e. ( 0 (,) 1 ) -> ( ( t e. ( 0 (,) 1 ) |-> ( ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) x. ( Y - Z ) ) ) ` t ) = ( ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) x. ( Y - Z ) ) ) |
| 210 | 206 209 | sylan9eq | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) ` t ) = ( ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) x. ( Y - Z ) ) ) |
| 211 | 210 | fveq2d | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) ` t ) ) = ( abs ` ( ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) x. ( Y - Z ) ) ) ) |
| 212 | dvfcn | |- ( CC _D F ) : dom ( CC _D F ) --> CC |
|
| 213 | 6 | ad2antrr | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> B C_ dom ( CC _D F ) ) |
| 214 | 213 122 | sseldd | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) e. dom ( CC _D F ) ) |
| 215 | ffvelcdm | |- ( ( ( CC _D F ) : dom ( CC _D F ) --> CC /\ ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) e. dom ( CC _D F ) ) -> ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) e. CC ) |
|
| 216 | 212 214 215 | sylancr | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) e. CC ) |
| 217 | 216 124 | absmuld | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) x. ( Y - Z ) ) ) = ( ( abs ` ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) x. ( abs ` ( Y - Z ) ) ) ) |
| 218 | 211 217 | eqtrd | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) ` t ) ) = ( ( abs ` ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) x. ( abs ` ( Y - Z ) ) ) ) |
| 219 | 216 | abscld | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) e. RR ) |
| 220 | 7 | ad2antrr | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> M e. RR ) |
| 221 | 124 | abscld | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( Y - Z ) ) e. RR ) |
| 222 | 124 | absge0d | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> 0 <_ ( abs ` ( Y - Z ) ) ) |
| 223 | 2fveq3 | |- ( y = ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) -> ( abs ` ( ( CC _D F ) ` y ) ) = ( abs ` ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) |
|
| 224 | 223 | breq1d | |- ( y = ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) -> ( ( abs ` ( ( CC _D F ) ` y ) ) <_ M <-> ( abs ` ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) <_ M ) ) |
| 225 | 8 | ralrimiva | |- ( ph -> A. x e. B ( abs ` ( ( CC _D F ) ` x ) ) <_ M ) |
| 226 | 2fveq3 | |- ( x = y -> ( abs ` ( ( CC _D F ) ` x ) ) = ( abs ` ( ( CC _D F ) ` y ) ) ) |
|
| 227 | 226 | breq1d | |- ( x = y -> ( ( abs ` ( ( CC _D F ) ` x ) ) <_ M <-> ( abs ` ( ( CC _D F ) ` y ) ) <_ M ) ) |
| 228 | 227 | cbvralvw | |- ( A. x e. B ( abs ` ( ( CC _D F ) ` x ) ) <_ M <-> A. y e. B ( abs ` ( ( CC _D F ) ` y ) ) <_ M ) |
| 229 | 225 228 | sylib | |- ( ph -> A. y e. B ( abs ` ( ( CC _D F ) ` y ) ) <_ M ) |
| 230 | 229 | ad2antrr | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> A. y e. B ( abs ` ( ( CC _D F ) ` y ) ) <_ M ) |
| 231 | 224 230 122 | rspcdva | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) <_ M ) |
| 232 | 219 220 221 222 231 | lemul1ad | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> ( ( abs ` ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) x. ( abs ` ( Y - Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) |
| 233 | 218 232 | eqbrtrd | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) ` t ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) |
| 234 | 233 | ralrimiva | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> A. t e. ( 0 (,) 1 ) ( abs ` ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) ` t ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) |
| 235 | nfv | |- F/ z ( abs ` ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) ` t ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) |
|
| 236 | nfcv | |- F/_ t abs |
|
| 237 | nfcv | |- F/_ t RR |
|
| 238 | nfcv | |- F/_ t _D |
|
| 239 | nfmpt1 | |- F/_ t ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) |
|
| 240 | 237 238 239 | nfov | |- F/_ t ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) |
| 241 | nfcv | |- F/_ t z |
|
| 242 | 240 241 | nffv | |- F/_ t ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) ` z ) |
| 243 | 236 242 | nffv | |- F/_ t ( abs ` ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) ` z ) ) |
| 244 | nfcv | |- F/_ t <_ |
|
| 245 | nfcv | |- F/_ t ( M x. ( abs ` ( Y - Z ) ) ) |
|
| 246 | 243 244 245 | nfbr | |- F/ t ( abs ` ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) ` z ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) |
| 247 | 2fveq3 | |- ( t = z -> ( abs ` ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) ` t ) ) = ( abs ` ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) ` z ) ) ) |
|
| 248 | 247 | breq1d | |- ( t = z -> ( ( abs ` ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) ` t ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) <-> ( abs ` ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) ` z ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) ) |
| 249 | 235 246 248 | cbvralw | |- ( A. t e. ( 0 (,) 1 ) ( abs ` ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) ` t ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) <-> A. z e. ( 0 (,) 1 ) ( abs ` ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) ` z ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) |
| 250 | 234 249 | sylib | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> A. z e. ( 0 (,) 1 ) ( abs ` ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) ` z ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) |
| 251 | 250 | r19.21bi | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ z e. ( 0 (,) 1 ) ) -> ( abs ` ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) ` z ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) |
| 252 | 11 12 104 202 205 251 | dvlip | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ ( 1 e. ( 0 [,] 1 ) /\ 0 e. ( 0 [,] 1 ) ) ) -> ( abs ` ( ( ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ` 1 ) - ( ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ` 0 ) ) ) <_ ( ( M x. ( abs ` ( Y - Z ) ) ) x. ( abs ` ( 1 - 0 ) ) ) ) |
| 253 | 9 10 252 | mpanr12 | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( abs ` ( ( ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ` 1 ) - ( ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ` 0 ) ) ) <_ ( ( M x. ( abs ` ( Y - Z ) ) ) x. ( abs ` ( 1 - 0 ) ) ) ) |
| 254 | oveq2 | |- ( t = 1 -> ( Y x. t ) = ( Y x. 1 ) ) |
|
| 255 | oveq2 | |- ( t = 1 -> ( 1 - t ) = ( 1 - 1 ) ) |
|
| 256 | 1m1e0 | |- ( 1 - 1 ) = 0 |
|
| 257 | 255 256 | eqtrdi | |- ( t = 1 -> ( 1 - t ) = 0 ) |
| 258 | 257 | oveq2d | |- ( t = 1 -> ( Z x. ( 1 - t ) ) = ( Z x. 0 ) ) |
| 259 | 254 258 | oveq12d | |- ( t = 1 -> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) = ( ( Y x. 1 ) + ( Z x. 0 ) ) ) |
| 260 | 259 | fveq2d | |- ( t = 1 -> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) = ( F ` ( ( Y x. 1 ) + ( Z x. 0 ) ) ) ) |
| 261 | eqid | |- ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) = ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) |
|
| 262 | fvex | |- ( F ` ( ( Y x. 1 ) + ( Z x. 0 ) ) ) e. _V |
|
| 263 | 260 261 262 | fvmpt | |- ( 1 e. ( 0 [,] 1 ) -> ( ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ` 1 ) = ( F ` ( ( Y x. 1 ) + ( Z x. 0 ) ) ) ) |
| 264 | 9 263 | ax-mp | |- ( ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ` 1 ) = ( F ` ( ( Y x. 1 ) + ( Z x. 0 ) ) ) |
| 265 | 28 | mul01d | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( Z x. 0 ) = 0 ) |
| 266 | 145 265 | oveq12d | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( Y x. 1 ) + ( Z x. 0 ) ) = ( Y + 0 ) ) |
| 267 | 19 | addridd | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( Y + 0 ) = Y ) |
| 268 | 266 267 | eqtrd | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( Y x. 1 ) + ( Z x. 0 ) ) = Y ) |
| 269 | 268 | fveq2d | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( F ` ( ( Y x. 1 ) + ( Z x. 0 ) ) ) = ( F ` Y ) ) |
| 270 | 264 269 | eqtrid | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ` 1 ) = ( F ` Y ) ) |
| 271 | oveq2 | |- ( t = 0 -> ( Y x. t ) = ( Y x. 0 ) ) |
|
| 272 | oveq2 | |- ( t = 0 -> ( 1 - t ) = ( 1 - 0 ) ) |
|
| 273 | 1m0e1 | |- ( 1 - 0 ) = 1 |
|
| 274 | 272 273 | eqtrdi | |- ( t = 0 -> ( 1 - t ) = 1 ) |
| 275 | 274 | oveq2d | |- ( t = 0 -> ( Z x. ( 1 - t ) ) = ( Z x. 1 ) ) |
| 276 | 271 275 | oveq12d | |- ( t = 0 -> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) = ( ( Y x. 0 ) + ( Z x. 1 ) ) ) |
| 277 | 276 | fveq2d | |- ( t = 0 -> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) = ( F ` ( ( Y x. 0 ) + ( Z x. 1 ) ) ) ) |
| 278 | fvex | |- ( F ` ( ( Y x. 0 ) + ( Z x. 1 ) ) ) e. _V |
|
| 279 | 277 261 278 | fvmpt | |- ( 0 e. ( 0 [,] 1 ) -> ( ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ` 0 ) = ( F ` ( ( Y x. 0 ) + ( Z x. 1 ) ) ) ) |
| 280 | 10 279 | ax-mp | |- ( ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ` 0 ) = ( F ` ( ( Y x. 0 ) + ( Z x. 1 ) ) ) |
| 281 | 19 | mul01d | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( Y x. 0 ) = 0 ) |
| 282 | 28 | mulridd | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( Z x. 1 ) = Z ) |
| 283 | 281 282 | oveq12d | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( Y x. 0 ) + ( Z x. 1 ) ) = ( 0 + Z ) ) |
| 284 | 28 | addlidd | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( 0 + Z ) = Z ) |
| 285 | 283 284 | eqtrd | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( Y x. 0 ) + ( Z x. 1 ) ) = Z ) |
| 286 | 285 | fveq2d | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( F ` ( ( Y x. 0 ) + ( Z x. 1 ) ) ) = ( F ` Z ) ) |
| 287 | 280 286 | eqtrid | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ` 0 ) = ( F ` Z ) ) |
| 288 | 270 287 | oveq12d | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ` 1 ) - ( ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ` 0 ) ) = ( ( F ` Y ) - ( F ` Z ) ) ) |
| 289 | 288 | fveq2d | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( abs ` ( ( ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ` 1 ) - ( ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ` 0 ) ) ) = ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) ) |
| 290 | 273 | fveq2i | |- ( abs ` ( 1 - 0 ) ) = ( abs ` 1 ) |
| 291 | abs1 | |- ( abs ` 1 ) = 1 |
|
| 292 | 290 291 | eqtri | |- ( abs ` ( 1 - 0 ) ) = 1 |
| 293 | 292 | oveq2i | |- ( ( M x. ( abs ` ( Y - Z ) ) ) x. ( abs ` ( 1 - 0 ) ) ) = ( ( M x. ( abs ` ( Y - Z ) ) ) x. 1 ) |
| 294 | 205 | recnd | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( M x. ( abs ` ( Y - Z ) ) ) e. CC ) |
| 295 | 294 | mulridd | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( M x. ( abs ` ( Y - Z ) ) ) x. 1 ) = ( M x. ( abs ` ( Y - Z ) ) ) ) |
| 296 | 293 295 | eqtrid | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( M x. ( abs ` ( Y - Z ) ) ) x. ( abs ` ( 1 - 0 ) ) ) = ( M x. ( abs ` ( Y - Z ) ) ) ) |
| 297 | 253 289 296 | 3brtr3d | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) |