This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A differentiable function is continuous. (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by Mario Carneiro, 7-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvcn | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ dom ( S _D F ) = A ) -> F e. ( A -cn-> CC ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ dom ( S _D F ) = A ) -> F : A --> CC ) |
|
| 2 | eqid | |- ( ( TopOpen ` CCfld ) |`t A ) = ( ( TopOpen ` CCfld ) |`t A ) |
|
| 3 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 4 | 2 3 | dvcnp2 | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ x e. dom ( S _D F ) ) -> F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) ) |
| 5 | 4 | ralrimiva | |- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> A. x e. dom ( S _D F ) F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) ) |
| 6 | raleq | |- ( dom ( S _D F ) = A -> ( A. x e. dom ( S _D F ) F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) <-> A. x e. A F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) ) ) |
|
| 7 | 6 | biimpd | |- ( dom ( S _D F ) = A -> ( A. x e. dom ( S _D F ) F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) -> A. x e. A F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) ) ) |
| 8 | 5 7 | mpan9 | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ dom ( S _D F ) = A ) -> A. x e. A F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) ) |
| 9 | 3 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 10 | simpl3 | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ dom ( S _D F ) = A ) -> A C_ S ) |
|
| 11 | simpl1 | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ dom ( S _D F ) = A ) -> S C_ CC ) |
|
| 12 | 10 11 | sstrd | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ dom ( S _D F ) = A ) -> A C_ CC ) |
| 13 | resttopon | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ A C_ CC ) -> ( ( TopOpen ` CCfld ) |`t A ) e. ( TopOn ` A ) ) |
|
| 14 | 9 12 13 | sylancr | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ dom ( S _D F ) = A ) -> ( ( TopOpen ` CCfld ) |`t A ) e. ( TopOn ` A ) ) |
| 15 | cncnp | |- ( ( ( ( TopOpen ` CCfld ) |`t A ) e. ( TopOn ` A ) /\ ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) -> ( F e. ( ( ( TopOpen ` CCfld ) |`t A ) Cn ( TopOpen ` CCfld ) ) <-> ( F : A --> CC /\ A. x e. A F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) ) ) ) |
|
| 16 | 14 9 15 | sylancl | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ dom ( S _D F ) = A ) -> ( F e. ( ( ( TopOpen ` CCfld ) |`t A ) Cn ( TopOpen ` CCfld ) ) <-> ( F : A --> CC /\ A. x e. A F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) ) ) ) |
| 17 | 1 8 16 | mpbir2and | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ dom ( S _D F ) = A ) -> F e. ( ( ( TopOpen ` CCfld ) |`t A ) Cn ( TopOpen ` CCfld ) ) ) |
| 18 | ssid | |- CC C_ CC |
|
| 19 | 9 | toponrestid | |- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 20 | 3 2 19 | cncfcn | |- ( ( A C_ CC /\ CC C_ CC ) -> ( A -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t A ) Cn ( TopOpen ` CCfld ) ) ) |
| 21 | 12 18 20 | sylancl | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ dom ( S _D F ) = A ) -> ( A -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t A ) Cn ( TopOpen ` CCfld ) ) ) |
| 22 | 17 21 | eleqtrrd | |- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ dom ( S _D F ) = A ) -> F e. ( A -cn-> CC ) ) |