This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function-builder for derivative: expand the function from an open set to its closure. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvmptntr.s | |- ( ph -> S C_ CC ) |
|
| dvmptntr.x | |- ( ph -> X C_ S ) |
||
| dvmptntr.a | |- ( ( ph /\ x e. X ) -> A e. CC ) |
||
| dvmptntr.j | |- J = ( K |`t S ) |
||
| dvmptntr.k | |- K = ( TopOpen ` CCfld ) |
||
| dvmptntr.i | |- ( ph -> ( ( int ` J ) ` X ) = Y ) |
||
| Assertion | dvmptntr | |- ( ph -> ( S _D ( x e. X |-> A ) ) = ( S _D ( x e. Y |-> A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptntr.s | |- ( ph -> S C_ CC ) |
|
| 2 | dvmptntr.x | |- ( ph -> X C_ S ) |
|
| 3 | dvmptntr.a | |- ( ( ph /\ x e. X ) -> A e. CC ) |
|
| 4 | dvmptntr.j | |- J = ( K |`t S ) |
|
| 5 | dvmptntr.k | |- K = ( TopOpen ` CCfld ) |
|
| 6 | dvmptntr.i | |- ( ph -> ( ( int ` J ) ` X ) = Y ) |
|
| 7 | 5 | cnfldtopon | |- K e. ( TopOn ` CC ) |
| 8 | resttopon | |- ( ( K e. ( TopOn ` CC ) /\ S C_ CC ) -> ( K |`t S ) e. ( TopOn ` S ) ) |
|
| 9 | 7 1 8 | sylancr | |- ( ph -> ( K |`t S ) e. ( TopOn ` S ) ) |
| 10 | 4 9 | eqeltrid | |- ( ph -> J e. ( TopOn ` S ) ) |
| 11 | topontop | |- ( J e. ( TopOn ` S ) -> J e. Top ) |
|
| 12 | 10 11 | syl | |- ( ph -> J e. Top ) |
| 13 | toponuni | |- ( J e. ( TopOn ` S ) -> S = U. J ) |
|
| 14 | 10 13 | syl | |- ( ph -> S = U. J ) |
| 15 | 2 14 | sseqtrd | |- ( ph -> X C_ U. J ) |
| 16 | eqid | |- U. J = U. J |
|
| 17 | 16 | ntridm | |- ( ( J e. Top /\ X C_ U. J ) -> ( ( int ` J ) ` ( ( int ` J ) ` X ) ) = ( ( int ` J ) ` X ) ) |
| 18 | 12 15 17 | syl2anc | |- ( ph -> ( ( int ` J ) ` ( ( int ` J ) ` X ) ) = ( ( int ` J ) ` X ) ) |
| 19 | 6 | fveq2d | |- ( ph -> ( ( int ` J ) ` ( ( int ` J ) ` X ) ) = ( ( int ` J ) ` Y ) ) |
| 20 | 18 19 | eqtr3d | |- ( ph -> ( ( int ` J ) ` X ) = ( ( int ` J ) ` Y ) ) |
| 21 | 20 | reseq2d | |- ( ph -> ( ( S _D ( x e. X |-> A ) ) |` ( ( int ` J ) ` X ) ) = ( ( S _D ( x e. X |-> A ) ) |` ( ( int ` J ) ` Y ) ) ) |
| 22 | 3 | fmpttd | |- ( ph -> ( x e. X |-> A ) : X --> CC ) |
| 23 | 5 4 | dvres | |- ( ( ( S C_ CC /\ ( x e. X |-> A ) : X --> CC ) /\ ( X C_ S /\ X C_ S ) ) -> ( S _D ( ( x e. X |-> A ) |` X ) ) = ( ( S _D ( x e. X |-> A ) ) |` ( ( int ` J ) ` X ) ) ) |
| 24 | 1 22 2 2 23 | syl22anc | |- ( ph -> ( S _D ( ( x e. X |-> A ) |` X ) ) = ( ( S _D ( x e. X |-> A ) ) |` ( ( int ` J ) ` X ) ) ) |
| 25 | 16 | ntrss2 | |- ( ( J e. Top /\ X C_ U. J ) -> ( ( int ` J ) ` X ) C_ X ) |
| 26 | 12 15 25 | syl2anc | |- ( ph -> ( ( int ` J ) ` X ) C_ X ) |
| 27 | 6 26 | eqsstrrd | |- ( ph -> Y C_ X ) |
| 28 | 27 2 | sstrd | |- ( ph -> Y C_ S ) |
| 29 | 5 4 | dvres | |- ( ( ( S C_ CC /\ ( x e. X |-> A ) : X --> CC ) /\ ( X C_ S /\ Y C_ S ) ) -> ( S _D ( ( x e. X |-> A ) |` Y ) ) = ( ( S _D ( x e. X |-> A ) ) |` ( ( int ` J ) ` Y ) ) ) |
| 30 | 1 22 2 28 29 | syl22anc | |- ( ph -> ( S _D ( ( x e. X |-> A ) |` Y ) ) = ( ( S _D ( x e. X |-> A ) ) |` ( ( int ` J ) ` Y ) ) ) |
| 31 | 21 24 30 | 3eqtr4d | |- ( ph -> ( S _D ( ( x e. X |-> A ) |` X ) ) = ( S _D ( ( x e. X |-> A ) |` Y ) ) ) |
| 32 | ssid | |- X C_ X |
|
| 33 | resmpt | |- ( X C_ X -> ( ( x e. X |-> A ) |` X ) = ( x e. X |-> A ) ) |
|
| 34 | 32 33 | mp1i | |- ( ph -> ( ( x e. X |-> A ) |` X ) = ( x e. X |-> A ) ) |
| 35 | 34 | oveq2d | |- ( ph -> ( S _D ( ( x e. X |-> A ) |` X ) ) = ( S _D ( x e. X |-> A ) ) ) |
| 36 | 31 35 | eqtr3d | |- ( ph -> ( S _D ( ( x e. X |-> A ) |` Y ) ) = ( S _D ( x e. X |-> A ) ) ) |
| 37 | 27 | resmptd | |- ( ph -> ( ( x e. X |-> A ) |` Y ) = ( x e. Y |-> A ) ) |
| 38 | 37 | oveq2d | |- ( ph -> ( S _D ( ( x e. X |-> A ) |` Y ) ) = ( S _D ( x e. Y |-> A ) ) ) |
| 39 | 36 38 | eqtr3d | |- ( ph -> ( S _D ( x e. X |-> A ) ) = ( S _D ( x e. Y |-> A ) ) ) |