This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of differentiable points is a subset of the domain of the function. (Contributed by Mario Carneiro, 6-Aug-2014) (Revised by Mario Carneiro, 9-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvcl.s | |- ( ph -> S C_ CC ) |
|
| dvcl.f | |- ( ph -> F : A --> CC ) |
||
| dvcl.a | |- ( ph -> A C_ S ) |
||
| Assertion | dvbss | |- ( ph -> dom ( S _D F ) C_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvcl.s | |- ( ph -> S C_ CC ) |
|
| 2 | dvcl.f | |- ( ph -> F : A --> CC ) |
|
| 3 | dvcl.a | |- ( ph -> A C_ S ) |
|
| 4 | eqid | |- ( ( TopOpen ` CCfld ) |`t S ) = ( ( TopOpen ` CCfld ) |`t S ) |
|
| 5 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 6 | 1 2 3 4 5 | dvbssntr | |- ( ph -> dom ( S _D F ) C_ ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` A ) ) |
| 7 | 5 | cnfldtop | |- ( TopOpen ` CCfld ) e. Top |
| 8 | cnex | |- CC e. _V |
|
| 9 | ssexg | |- ( ( S C_ CC /\ CC e. _V ) -> S e. _V ) |
|
| 10 | 1 8 9 | sylancl | |- ( ph -> S e. _V ) |
| 11 | resttop | |- ( ( ( TopOpen ` CCfld ) e. Top /\ S e. _V ) -> ( ( TopOpen ` CCfld ) |`t S ) e. Top ) |
|
| 12 | 7 10 11 | sylancr | |- ( ph -> ( ( TopOpen ` CCfld ) |`t S ) e. Top ) |
| 13 | 5 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 14 | resttopon | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ S C_ CC ) -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) |
|
| 15 | 13 1 14 | sylancr | |- ( ph -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) |
| 16 | toponuni | |- ( ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) -> S = U. ( ( TopOpen ` CCfld ) |`t S ) ) |
|
| 17 | 15 16 | syl | |- ( ph -> S = U. ( ( TopOpen ` CCfld ) |`t S ) ) |
| 18 | 3 17 | sseqtrd | |- ( ph -> A C_ U. ( ( TopOpen ` CCfld ) |`t S ) ) |
| 19 | eqid | |- U. ( ( TopOpen ` CCfld ) |`t S ) = U. ( ( TopOpen ` CCfld ) |`t S ) |
|
| 20 | 19 | ntrss2 | |- ( ( ( ( TopOpen ` CCfld ) |`t S ) e. Top /\ A C_ U. ( ( TopOpen ` CCfld ) |`t S ) ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` A ) C_ A ) |
| 21 | 12 18 20 | syl2anc | |- ( ph -> ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` A ) C_ A ) |
| 22 | 6 21 | sstrd | |- ( ph -> dom ( S _D F ) C_ A ) |