This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function-builder for derivative, product rule for constant multiplier. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvmptadd.s | |- ( ph -> S e. { RR , CC } ) |
|
| dvmptadd.a | |- ( ( ph /\ x e. X ) -> A e. CC ) |
||
| dvmptadd.b | |- ( ( ph /\ x e. X ) -> B e. V ) |
||
| dvmptadd.da | |- ( ph -> ( S _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) |
||
| dvmptcmul.c | |- ( ph -> C e. CC ) |
||
| Assertion | dvmptcmul | |- ( ph -> ( S _D ( x e. X |-> ( C x. A ) ) ) = ( x e. X |-> ( C x. B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptadd.s | |- ( ph -> S e. { RR , CC } ) |
|
| 2 | dvmptadd.a | |- ( ( ph /\ x e. X ) -> A e. CC ) |
|
| 3 | dvmptadd.b | |- ( ( ph /\ x e. X ) -> B e. V ) |
|
| 4 | dvmptadd.da | |- ( ph -> ( S _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) |
|
| 5 | dvmptcmul.c | |- ( ph -> C e. CC ) |
|
| 6 | 5 | adantr | |- ( ( ph /\ x e. X ) -> C e. CC ) |
| 7 | 0cnd | |- ( ( ph /\ x e. X ) -> 0 e. CC ) |
|
| 8 | 5 | adantr | |- ( ( ph /\ x e. S ) -> C e. CC ) |
| 9 | 0cnd | |- ( ( ph /\ x e. S ) -> 0 e. CC ) |
|
| 10 | 1 5 | dvmptc | |- ( ph -> ( S _D ( x e. S |-> C ) ) = ( x e. S |-> 0 ) ) |
| 11 | 4 | dmeqd | |- ( ph -> dom ( S _D ( x e. X |-> A ) ) = dom ( x e. X |-> B ) ) |
| 12 | 3 | ralrimiva | |- ( ph -> A. x e. X B e. V ) |
| 13 | dmmptg | |- ( A. x e. X B e. V -> dom ( x e. X |-> B ) = X ) |
|
| 14 | 12 13 | syl | |- ( ph -> dom ( x e. X |-> B ) = X ) |
| 15 | 11 14 | eqtrd | |- ( ph -> dom ( S _D ( x e. X |-> A ) ) = X ) |
| 16 | dvbsss | |- dom ( S _D ( x e. X |-> A ) ) C_ S |
|
| 17 | 15 16 | eqsstrrdi | |- ( ph -> X C_ S ) |
| 18 | eqid | |- ( ( TopOpen ` CCfld ) |`t S ) = ( ( TopOpen ` CCfld ) |`t S ) |
|
| 19 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 20 | 19 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 21 | recnprss | |- ( S e. { RR , CC } -> S C_ CC ) |
|
| 22 | 1 21 | syl | |- ( ph -> S C_ CC ) |
| 23 | resttopon | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ S C_ CC ) -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) |
|
| 24 | 20 22 23 | sylancr | |- ( ph -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) |
| 25 | topontop | |- ( ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) -> ( ( TopOpen ` CCfld ) |`t S ) e. Top ) |
|
| 26 | 24 25 | syl | |- ( ph -> ( ( TopOpen ` CCfld ) |`t S ) e. Top ) |
| 27 | toponuni | |- ( ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) -> S = U. ( ( TopOpen ` CCfld ) |`t S ) ) |
|
| 28 | 24 27 | syl | |- ( ph -> S = U. ( ( TopOpen ` CCfld ) |`t S ) ) |
| 29 | 17 28 | sseqtrd | |- ( ph -> X C_ U. ( ( TopOpen ` CCfld ) |`t S ) ) |
| 30 | eqid | |- U. ( ( TopOpen ` CCfld ) |`t S ) = U. ( ( TopOpen ` CCfld ) |`t S ) |
|
| 31 | 30 | ntrss2 | |- ( ( ( ( TopOpen ` CCfld ) |`t S ) e. Top /\ X C_ U. ( ( TopOpen ` CCfld ) |`t S ) ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) C_ X ) |
| 32 | 26 29 31 | syl2anc | |- ( ph -> ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) C_ X ) |
| 33 | 2 | fmpttd | |- ( ph -> ( x e. X |-> A ) : X --> CC ) |
| 34 | 22 33 17 18 19 | dvbssntr | |- ( ph -> dom ( S _D ( x e. X |-> A ) ) C_ ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) ) |
| 35 | 15 34 | eqsstrrd | |- ( ph -> X C_ ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) ) |
| 36 | 32 35 | eqssd | |- ( ph -> ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) = X ) |
| 37 | 1 8 9 10 17 18 19 36 | dvmptres2 | |- ( ph -> ( S _D ( x e. X |-> C ) ) = ( x e. X |-> 0 ) ) |
| 38 | 1 6 7 37 2 3 4 | dvmptmul | |- ( ph -> ( S _D ( x e. X |-> ( C x. A ) ) ) = ( x e. X |-> ( ( 0 x. A ) + ( B x. C ) ) ) ) |
| 39 | 2 | mul02d | |- ( ( ph /\ x e. X ) -> ( 0 x. A ) = 0 ) |
| 40 | 39 | oveq1d | |- ( ( ph /\ x e. X ) -> ( ( 0 x. A ) + ( B x. C ) ) = ( 0 + ( B x. C ) ) ) |
| 41 | 1 2 3 4 | dvmptcl | |- ( ( ph /\ x e. X ) -> B e. CC ) |
| 42 | 41 6 | mulcld | |- ( ( ph /\ x e. X ) -> ( B x. C ) e. CC ) |
| 43 | 42 | addlidd | |- ( ( ph /\ x e. X ) -> ( 0 + ( B x. C ) ) = ( B x. C ) ) |
| 44 | 41 6 | mulcomd | |- ( ( ph /\ x e. X ) -> ( B x. C ) = ( C x. B ) ) |
| 45 | 40 43 44 | 3eqtrd | |- ( ( ph /\ x e. X ) -> ( ( 0 x. A ) + ( B x. C ) ) = ( C x. B ) ) |
| 46 | 45 | mpteq2dva | |- ( ph -> ( x e. X |-> ( ( 0 x. A ) + ( B x. C ) ) ) = ( x e. X |-> ( C x. B ) ) ) |
| 47 | 38 46 | eqtrd | |- ( ph -> ( S _D ( x e. X |-> ( C x. A ) ) ) = ( x e. X |-> ( C x. B ) ) ) |