This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of continuous functions. -cn-> analogue of cnmpt12f . (Contributed by Mario Carneiro, 3-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cncfmpt2f.1 | |- J = ( TopOpen ` CCfld ) |
|
| cncfmpt2f.2 | |- ( ph -> F e. ( ( J tX J ) Cn J ) ) |
||
| cncfmpt2f.3 | |- ( ph -> ( x e. X |-> A ) e. ( X -cn-> CC ) ) |
||
| cncfmpt2f.4 | |- ( ph -> ( x e. X |-> B ) e. ( X -cn-> CC ) ) |
||
| Assertion | cncfmpt2f | |- ( ph -> ( x e. X |-> ( A F B ) ) e. ( X -cn-> CC ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfmpt2f.1 | |- J = ( TopOpen ` CCfld ) |
|
| 2 | cncfmpt2f.2 | |- ( ph -> F e. ( ( J tX J ) Cn J ) ) |
|
| 3 | cncfmpt2f.3 | |- ( ph -> ( x e. X |-> A ) e. ( X -cn-> CC ) ) |
|
| 4 | cncfmpt2f.4 | |- ( ph -> ( x e. X |-> B ) e. ( X -cn-> CC ) ) |
|
| 5 | 1 | cnfldtopon | |- J e. ( TopOn ` CC ) |
| 6 | cncfrss | |- ( ( x e. X |-> A ) e. ( X -cn-> CC ) -> X C_ CC ) |
|
| 7 | 3 6 | syl | |- ( ph -> X C_ CC ) |
| 8 | resttopon | |- ( ( J e. ( TopOn ` CC ) /\ X C_ CC ) -> ( J |`t X ) e. ( TopOn ` X ) ) |
|
| 9 | 5 7 8 | sylancr | |- ( ph -> ( J |`t X ) e. ( TopOn ` X ) ) |
| 10 | ssid | |- CC C_ CC |
|
| 11 | eqid | |- ( J |`t X ) = ( J |`t X ) |
|
| 12 | 5 | toponrestid | |- J = ( J |`t CC ) |
| 13 | 1 11 12 | cncfcn | |- ( ( X C_ CC /\ CC C_ CC ) -> ( X -cn-> CC ) = ( ( J |`t X ) Cn J ) ) |
| 14 | 7 10 13 | sylancl | |- ( ph -> ( X -cn-> CC ) = ( ( J |`t X ) Cn J ) ) |
| 15 | 3 14 | eleqtrd | |- ( ph -> ( x e. X |-> A ) e. ( ( J |`t X ) Cn J ) ) |
| 16 | 4 14 | eleqtrd | |- ( ph -> ( x e. X |-> B ) e. ( ( J |`t X ) Cn J ) ) |
| 17 | 9 15 16 2 | cnmpt12f | |- ( ph -> ( x e. X |-> ( A F B ) ) e. ( ( J |`t X ) Cn J ) ) |
| 18 | 17 14 | eleqtrrd | |- ( ph -> ( x e. X |-> ( A F B ) ) e. ( X -cn-> CC ) ) |