This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Combine the results of dvlip and dvlipcn into one. (Contributed by Mario Carneiro, 18-Mar-2015) (Revised by Mario Carneiro, 8-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvlip2.s | |- ( ph -> S e. { RR , CC } ) |
|
| dvlip2.j | |- J = ( ( abs o. - ) |` ( S X. S ) ) |
||
| dvlip2.x | |- ( ph -> X C_ S ) |
||
| dvlip2.f | |- ( ph -> F : X --> CC ) |
||
| dvlip2.a | |- ( ph -> A e. S ) |
||
| dvlip2.r | |- ( ph -> R e. RR* ) |
||
| dvlip2.b | |- B = ( A ( ball ` J ) R ) |
||
| dvlip2.d | |- ( ph -> B C_ dom ( S _D F ) ) |
||
| dvlip2.m | |- ( ph -> M e. RR ) |
||
| dvlip2.l | |- ( ( ph /\ x e. B ) -> ( abs ` ( ( S _D F ) ` x ) ) <_ M ) |
||
| Assertion | dvlip2 | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvlip2.s | |- ( ph -> S e. { RR , CC } ) |
|
| 2 | dvlip2.j | |- J = ( ( abs o. - ) |` ( S X. S ) ) |
|
| 3 | dvlip2.x | |- ( ph -> X C_ S ) |
|
| 4 | dvlip2.f | |- ( ph -> F : X --> CC ) |
|
| 5 | dvlip2.a | |- ( ph -> A e. S ) |
|
| 6 | dvlip2.r | |- ( ph -> R e. RR* ) |
|
| 7 | dvlip2.b | |- B = ( A ( ball ` J ) R ) |
|
| 8 | dvlip2.d | |- ( ph -> B C_ dom ( S _D F ) ) |
|
| 9 | dvlip2.m | |- ( ph -> M e. RR ) |
|
| 10 | dvlip2.l | |- ( ( ph /\ x e. B ) -> ( abs ` ( ( S _D F ) ` x ) ) <_ M ) |
|
| 11 | cnxmet | |- ( abs o. - ) e. ( *Met ` CC ) |
|
| 12 | recnprss | |- ( S e. { RR , CC } -> S C_ CC ) |
|
| 13 | 1 12 | syl | |- ( ph -> S C_ CC ) |
| 14 | xmetres2 | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ S C_ CC ) -> ( ( abs o. - ) |` ( S X. S ) ) e. ( *Met ` S ) ) |
|
| 15 | 11 13 14 | sylancr | |- ( ph -> ( ( abs o. - ) |` ( S X. S ) ) e. ( *Met ` S ) ) |
| 16 | 2 15 | eqeltrid | |- ( ph -> J e. ( *Met ` S ) ) |
| 17 | 16 | ad2antrr | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> J e. ( *Met ` S ) ) |
| 18 | 5 | ad2antrr | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> A e. S ) |
| 19 | simplrr | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> Z e. B ) |
|
| 20 | 19 7 | eleqtrdi | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> Z e. ( A ( ball ` J ) R ) ) |
| 21 | 6 | ad2antrr | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> R e. RR* ) |
| 22 | elbl | |- ( ( J e. ( *Met ` S ) /\ A e. S /\ R e. RR* ) -> ( Z e. ( A ( ball ` J ) R ) <-> ( Z e. S /\ ( A J Z ) < R ) ) ) |
|
| 23 | 17 18 21 22 | syl3anc | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( Z e. ( A ( ball ` J ) R ) <-> ( Z e. S /\ ( A J Z ) < R ) ) ) |
| 24 | 20 23 | mpbid | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( Z e. S /\ ( A J Z ) < R ) ) |
| 25 | 24 | simpld | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> Z e. S ) |
| 26 | xmetcl | |- ( ( J e. ( *Met ` S ) /\ A e. S /\ Z e. S ) -> ( A J Z ) e. RR* ) |
|
| 27 | 17 18 25 26 | syl3anc | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( A J Z ) e. RR* ) |
| 28 | simplrl | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> Y e. B ) |
|
| 29 | 28 7 | eleqtrdi | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> Y e. ( A ( ball ` J ) R ) ) |
| 30 | elbl | |- ( ( J e. ( *Met ` S ) /\ A e. S /\ R e. RR* ) -> ( Y e. ( A ( ball ` J ) R ) <-> ( Y e. S /\ ( A J Y ) < R ) ) ) |
|
| 31 | 17 18 21 30 | syl3anc | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( Y e. ( A ( ball ` J ) R ) <-> ( Y e. S /\ ( A J Y ) < R ) ) ) |
| 32 | 29 31 | mpbid | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( Y e. S /\ ( A J Y ) < R ) ) |
| 33 | 32 | simpld | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> Y e. S ) |
| 34 | xmetcl | |- ( ( J e. ( *Met ` S ) /\ A e. S /\ Y e. S ) -> ( A J Y ) e. RR* ) |
|
| 35 | 17 18 33 34 | syl3anc | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( A J Y ) e. RR* ) |
| 36 | 27 35 | ifcld | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) e. RR* ) |
| 37 | 24 | simprd | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( A J Z ) < R ) |
| 38 | 32 | simprd | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( A J Y ) < R ) |
| 39 | breq1 | |- ( ( A J Z ) = if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) -> ( ( A J Z ) < R <-> if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) < R ) ) |
|
| 40 | breq1 | |- ( ( A J Y ) = if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) -> ( ( A J Y ) < R <-> if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) < R ) ) |
|
| 41 | 39 40 | ifboth | |- ( ( ( A J Z ) < R /\ ( A J Y ) < R ) -> if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) < R ) |
| 42 | 37 38 41 | syl2anc | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) < R ) |
| 43 | qbtwnxr | |- ( ( if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) e. RR* /\ R e. RR* /\ if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) < R ) -> E. r e. QQ ( if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) < r /\ r < R ) ) |
|
| 44 | 36 21 42 43 | syl3anc | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> E. r e. QQ ( if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) < r /\ r < R ) ) |
| 45 | qre | |- ( r e. QQ -> r e. RR ) |
|
| 46 | rexr | |- ( r e. RR -> r e. RR* ) |
|
| 47 | xrmaxlt | |- ( ( ( A J Y ) e. RR* /\ ( A J Z ) e. RR* /\ r e. RR* ) -> ( if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) < r <-> ( ( A J Y ) < r /\ ( A J Z ) < r ) ) ) |
|
| 48 | 35 27 46 47 | syl2an3an | |- ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) -> ( if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) < r <-> ( ( A J Y ) < r /\ ( A J Z ) < r ) ) ) |
| 49 | ioossicc | |- ( ( A - r ) (,) ( A + r ) ) C_ ( ( A - r ) [,] ( A + r ) ) |
|
| 50 | simpr | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> S = RR ) |
|
| 51 | 33 50 | eleqtrd | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> Y e. RR ) |
| 52 | 51 | ad2antrr | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> Y e. RR ) |
| 53 | xmetsym | |- ( ( J e. ( *Met ` S ) /\ A e. S /\ Y e. S ) -> ( A J Y ) = ( Y J A ) ) |
|
| 54 | 17 18 33 53 | syl3anc | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( A J Y ) = ( Y J A ) ) |
| 55 | 50 | sqxpeqd | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( S X. S ) = ( RR X. RR ) ) |
| 56 | 55 | reseq2d | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( ( abs o. - ) |` ( S X. S ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) ) |
| 57 | 2 56 | eqtrid | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> J = ( ( abs o. - ) |` ( RR X. RR ) ) ) |
| 58 | 57 | oveqd | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( Y J A ) = ( Y ( ( abs o. - ) |` ( RR X. RR ) ) A ) ) |
| 59 | 18 50 | eleqtrd | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> A e. RR ) |
| 60 | eqid | |- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
|
| 61 | 60 | remetdval | |- ( ( Y e. RR /\ A e. RR ) -> ( Y ( ( abs o. - ) |` ( RR X. RR ) ) A ) = ( abs ` ( Y - A ) ) ) |
| 62 | 51 59 61 | syl2anc | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( Y ( ( abs o. - ) |` ( RR X. RR ) ) A ) = ( abs ` ( Y - A ) ) ) |
| 63 | 54 58 62 | 3eqtrd | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( A J Y ) = ( abs ` ( Y - A ) ) ) |
| 64 | 63 | ad2antrr | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( A J Y ) = ( abs ` ( Y - A ) ) ) |
| 65 | simprll | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( A J Y ) < r ) |
|
| 66 | 64 65 | eqbrtrrd | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( abs ` ( Y - A ) ) < r ) |
| 67 | 59 | ad2antrr | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> A e. RR ) |
| 68 | simplr | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> r e. RR ) |
|
| 69 | 52 67 68 | absdifltd | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( abs ` ( Y - A ) ) < r <-> ( ( A - r ) < Y /\ Y < ( A + r ) ) ) ) |
| 70 | 66 69 | mpbid | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( A - r ) < Y /\ Y < ( A + r ) ) ) |
| 71 | 70 | simpld | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( A - r ) < Y ) |
| 72 | 70 | simprd | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> Y < ( A + r ) ) |
| 73 | 67 68 | resubcld | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( A - r ) e. RR ) |
| 74 | 73 | rexrd | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( A - r ) e. RR* ) |
| 75 | 67 68 | readdcld | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( A + r ) e. RR ) |
| 76 | 75 | rexrd | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( A + r ) e. RR* ) |
| 77 | elioo2 | |- ( ( ( A - r ) e. RR* /\ ( A + r ) e. RR* ) -> ( Y e. ( ( A - r ) (,) ( A + r ) ) <-> ( Y e. RR /\ ( A - r ) < Y /\ Y < ( A + r ) ) ) ) |
|
| 78 | 74 76 77 | syl2anc | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( Y e. ( ( A - r ) (,) ( A + r ) ) <-> ( Y e. RR /\ ( A - r ) < Y /\ Y < ( A + r ) ) ) ) |
| 79 | 52 71 72 78 | mpbir3and | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> Y e. ( ( A - r ) (,) ( A + r ) ) ) |
| 80 | 49 79 | sselid | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> Y e. ( ( A - r ) [,] ( A + r ) ) ) |
| 81 | 80 | fvresd | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( F |` ( ( A - r ) [,] ( A + r ) ) ) ` Y ) = ( F ` Y ) ) |
| 82 | 25 50 | eleqtrd | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> Z e. RR ) |
| 83 | 82 | ad2antrr | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> Z e. RR ) |
| 84 | xmetsym | |- ( ( J e. ( *Met ` S ) /\ A e. S /\ Z e. S ) -> ( A J Z ) = ( Z J A ) ) |
|
| 85 | 17 18 25 84 | syl3anc | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( A J Z ) = ( Z J A ) ) |
| 86 | 57 | oveqd | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( Z J A ) = ( Z ( ( abs o. - ) |` ( RR X. RR ) ) A ) ) |
| 87 | 60 | remetdval | |- ( ( Z e. RR /\ A e. RR ) -> ( Z ( ( abs o. - ) |` ( RR X. RR ) ) A ) = ( abs ` ( Z - A ) ) ) |
| 88 | 82 59 87 | syl2anc | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( Z ( ( abs o. - ) |` ( RR X. RR ) ) A ) = ( abs ` ( Z - A ) ) ) |
| 89 | 85 86 88 | 3eqtrd | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( A J Z ) = ( abs ` ( Z - A ) ) ) |
| 90 | 89 | ad2antrr | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( A J Z ) = ( abs ` ( Z - A ) ) ) |
| 91 | simprlr | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( A J Z ) < r ) |
|
| 92 | 90 91 | eqbrtrrd | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( abs ` ( Z - A ) ) < r ) |
| 93 | 83 67 68 | absdifltd | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( abs ` ( Z - A ) ) < r <-> ( ( A - r ) < Z /\ Z < ( A + r ) ) ) ) |
| 94 | 92 93 | mpbid | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( A - r ) < Z /\ Z < ( A + r ) ) ) |
| 95 | 94 | simpld | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( A - r ) < Z ) |
| 96 | 94 | simprd | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> Z < ( A + r ) ) |
| 97 | elioo2 | |- ( ( ( A - r ) e. RR* /\ ( A + r ) e. RR* ) -> ( Z e. ( ( A - r ) (,) ( A + r ) ) <-> ( Z e. RR /\ ( A - r ) < Z /\ Z < ( A + r ) ) ) ) |
|
| 98 | 74 76 97 | syl2anc | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( Z e. ( ( A - r ) (,) ( A + r ) ) <-> ( Z e. RR /\ ( A - r ) < Z /\ Z < ( A + r ) ) ) ) |
| 99 | 83 95 96 98 | mpbir3and | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> Z e. ( ( A - r ) (,) ( A + r ) ) ) |
| 100 | 49 99 | sselid | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> Z e. ( ( A - r ) [,] ( A + r ) ) ) |
| 101 | 100 | fvresd | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( F |` ( ( A - r ) [,] ( A + r ) ) ) ` Z ) = ( F ` Z ) ) |
| 102 | 81 101 | oveq12d | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( ( F |` ( ( A - r ) [,] ( A + r ) ) ) ` Y ) - ( ( F |` ( ( A - r ) [,] ( A + r ) ) ) ` Z ) ) = ( ( F ` Y ) - ( F ` Z ) ) ) |
| 103 | 102 | fveq2d | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( abs ` ( ( ( F |` ( ( A - r ) [,] ( A + r ) ) ) ` Y ) - ( ( F |` ( ( A - r ) [,] ( A + r ) ) ) ` Z ) ) ) = ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) ) |
| 104 | 17 | ad3antrrr | |- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> J e. ( *Met ` S ) ) |
| 105 | elicc2 | |- ( ( ( A - r ) e. RR /\ ( A + r ) e. RR ) -> ( x e. ( ( A - r ) [,] ( A + r ) ) <-> ( x e. RR /\ ( A - r ) <_ x /\ x <_ ( A + r ) ) ) ) |
|
| 106 | 73 75 105 | syl2anc | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( x e. ( ( A - r ) [,] ( A + r ) ) <-> ( x e. RR /\ ( A - r ) <_ x /\ x <_ ( A + r ) ) ) ) |
| 107 | 106 | biimpa | |- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> ( x e. RR /\ ( A - r ) <_ x /\ x <_ ( A + r ) ) ) |
| 108 | 107 | simp1d | |- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> x e. RR ) |
| 109 | 50 | ad3antrrr | |- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> S = RR ) |
| 110 | 108 109 | eleqtrrd | |- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> x e. S ) |
| 111 | 18 | ad3antrrr | |- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> A e. S ) |
| 112 | xmetcl | |- ( ( J e. ( *Met ` S ) /\ x e. S /\ A e. S ) -> ( x J A ) e. RR* ) |
|
| 113 | 104 110 111 112 | syl3anc | |- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> ( x J A ) e. RR* ) |
| 114 | 68 | adantr | |- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> r e. RR ) |
| 115 | 114 | rexrd | |- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> r e. RR* ) |
| 116 | 21 | ad3antrrr | |- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> R e. RR* ) |
| 117 | 57 | ad3antrrr | |- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> J = ( ( abs o. - ) |` ( RR X. RR ) ) ) |
| 118 | 117 | oveqd | |- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> ( x J A ) = ( x ( ( abs o. - ) |` ( RR X. RR ) ) A ) ) |
| 119 | 67 | adantr | |- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> A e. RR ) |
| 120 | 60 | remetdval | |- ( ( x e. RR /\ A e. RR ) -> ( x ( ( abs o. - ) |` ( RR X. RR ) ) A ) = ( abs ` ( x - A ) ) ) |
| 121 | 108 119 120 | syl2anc | |- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> ( x ( ( abs o. - ) |` ( RR X. RR ) ) A ) = ( abs ` ( x - A ) ) ) |
| 122 | 118 121 | eqtrd | |- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> ( x J A ) = ( abs ` ( x - A ) ) ) |
| 123 | 107 | simp2d | |- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> ( A - r ) <_ x ) |
| 124 | 107 | simp3d | |- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> x <_ ( A + r ) ) |
| 125 | 108 119 114 | absdifled | |- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> ( ( abs ` ( x - A ) ) <_ r <-> ( ( A - r ) <_ x /\ x <_ ( A + r ) ) ) ) |
| 126 | 123 124 125 | mpbir2and | |- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> ( abs ` ( x - A ) ) <_ r ) |
| 127 | 122 126 | eqbrtrd | |- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> ( x J A ) <_ r ) |
| 128 | simplrr | |- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> r < R ) |
|
| 129 | 113 115 116 127 128 | xrlelttrd | |- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> ( x J A ) < R ) |
| 130 | elbl3 | |- ( ( ( J e. ( *Met ` S ) /\ R e. RR* ) /\ ( A e. S /\ x e. S ) ) -> ( x e. ( A ( ball ` J ) R ) <-> ( x J A ) < R ) ) |
|
| 131 | 104 116 111 110 130 | syl22anc | |- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> ( x e. ( A ( ball ` J ) R ) <-> ( x J A ) < R ) ) |
| 132 | 129 131 | mpbird | |- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> x e. ( A ( ball ` J ) R ) ) |
| 133 | 132 | ex | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( x e. ( ( A - r ) [,] ( A + r ) ) -> x e. ( A ( ball ` J ) R ) ) ) |
| 134 | 133 | ssrdv | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( A - r ) [,] ( A + r ) ) C_ ( A ( ball ` J ) R ) ) |
| 135 | 134 7 | sseqtrrdi | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( A - r ) [,] ( A + r ) ) C_ B ) |
| 136 | 135 | resabs1d | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( F |` B ) |` ( ( A - r ) [,] ( A + r ) ) ) = ( F |` ( ( A - r ) [,] ( A + r ) ) ) ) |
| 137 | ax-resscn | |- RR C_ CC |
|
| 138 | 137 | a1i | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> RR C_ CC ) |
| 139 | 4 | ad4antr | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> F : X --> CC ) |
| 140 | 13 4 3 | dvbss | |- ( ph -> dom ( S _D F ) C_ X ) |
| 141 | 8 140 | sstrd | |- ( ph -> B C_ X ) |
| 142 | 141 | ad4antr | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> B C_ X ) |
| 143 | 139 142 | fssresd | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( F |` B ) : B --> CC ) |
| 144 | blssm | |- ( ( J e. ( *Met ` S ) /\ A e. S /\ R e. RR* ) -> ( A ( ball ` J ) R ) C_ S ) |
|
| 145 | 17 18 21 144 | syl3anc | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( A ( ball ` J ) R ) C_ S ) |
| 146 | 7 145 | eqsstrid | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> B C_ S ) |
| 147 | 146 50 | sseqtrd | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> B C_ RR ) |
| 148 | 147 | ad2antrr | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> B C_ RR ) |
| 149 | 137 | a1i | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> RR C_ CC ) |
| 150 | 4 | ad2antrr | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> F : X --> CC ) |
| 151 | 3 | ad2antrr | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> X C_ S ) |
| 152 | 151 50 | sseqtrd | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> X C_ RR ) |
| 153 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 154 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 155 | 153 154 | dvres | |- ( ( ( RR C_ CC /\ F : X --> CC ) /\ ( X C_ RR /\ B C_ RR ) ) -> ( RR _D ( F |` B ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` B ) ) ) |
| 156 | 149 150 152 147 155 | syl22anc | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( RR _D ( F |` B ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` B ) ) ) |
| 157 | retop | |- ( topGen ` ran (,) ) e. Top |
|
| 158 | 57 | fveq2d | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( ball ` J ) = ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ) |
| 159 | 158 | oveqd | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( A ( ball ` J ) R ) = ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) R ) ) |
| 160 | 7 159 | eqtrid | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> B = ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) R ) ) |
| 161 | 57 17 | eqeltrrd | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` S ) ) |
| 162 | eqid | |- ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
|
| 163 | 60 162 | tgioo | |- ( topGen ` ran (,) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
| 164 | 163 | blopn | |- ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` S ) /\ A e. S /\ R e. RR* ) -> ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) R ) e. ( topGen ` ran (,) ) ) |
| 165 | 161 18 21 164 | syl3anc | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) R ) e. ( topGen ` ran (,) ) ) |
| 166 | 160 165 | eqeltrd | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> B e. ( topGen ` ran (,) ) ) |
| 167 | isopn3i | |- ( ( ( topGen ` ran (,) ) e. Top /\ B e. ( topGen ` ran (,) ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` B ) = B ) |
|
| 168 | 157 166 167 | sylancr | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` B ) = B ) |
| 169 | 168 | reseq2d | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` B ) ) = ( ( RR _D F ) |` B ) ) |
| 170 | 156 169 | eqtrd | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( RR _D ( F |` B ) ) = ( ( RR _D F ) |` B ) ) |
| 171 | 170 | dmeqd | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> dom ( RR _D ( F |` B ) ) = dom ( ( RR _D F ) |` B ) ) |
| 172 | dmres | |- dom ( ( RR _D F ) |` B ) = ( B i^i dom ( RR _D F ) ) |
|
| 173 | 8 | ad2antrr | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> B C_ dom ( S _D F ) ) |
| 174 | 50 | oveq1d | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( S _D F ) = ( RR _D F ) ) |
| 175 | 174 | dmeqd | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> dom ( S _D F ) = dom ( RR _D F ) ) |
| 176 | 173 175 | sseqtrd | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> B C_ dom ( RR _D F ) ) |
| 177 | dfss2 | |- ( B C_ dom ( RR _D F ) <-> ( B i^i dom ( RR _D F ) ) = B ) |
|
| 178 | 176 177 | sylib | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( B i^i dom ( RR _D F ) ) = B ) |
| 179 | 172 178 | eqtrid | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> dom ( ( RR _D F ) |` B ) = B ) |
| 180 | 171 179 | eqtrd | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> dom ( RR _D ( F |` B ) ) = B ) |
| 181 | 180 | ad2antrr | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> dom ( RR _D ( F |` B ) ) = B ) |
| 182 | dvcn | |- ( ( ( RR C_ CC /\ ( F |` B ) : B --> CC /\ B C_ RR ) /\ dom ( RR _D ( F |` B ) ) = B ) -> ( F |` B ) e. ( B -cn-> CC ) ) |
|
| 183 | 138 143 148 181 182 | syl31anc | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( F |` B ) e. ( B -cn-> CC ) ) |
| 184 | rescncf | |- ( ( ( A - r ) [,] ( A + r ) ) C_ B -> ( ( F |` B ) e. ( B -cn-> CC ) -> ( ( F |` B ) |` ( ( A - r ) [,] ( A + r ) ) ) e. ( ( ( A - r ) [,] ( A + r ) ) -cn-> CC ) ) ) |
|
| 185 | 135 183 184 | sylc | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( F |` B ) |` ( ( A - r ) [,] ( A + r ) ) ) e. ( ( ( A - r ) [,] ( A + r ) ) -cn-> CC ) ) |
| 186 | 136 185 | eqeltrrd | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( F |` ( ( A - r ) [,] ( A + r ) ) ) e. ( ( ( A - r ) [,] ( A + r ) ) -cn-> CC ) ) |
| 187 | 135 148 | sstrd | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( A - r ) [,] ( A + r ) ) C_ RR ) |
| 188 | 153 154 | dvres | |- ( ( ( RR C_ CC /\ ( F |` B ) : B --> CC ) /\ ( B C_ RR /\ ( ( A - r ) [,] ( A + r ) ) C_ RR ) ) -> ( RR _D ( ( F |` B ) |` ( ( A - r ) [,] ( A + r ) ) ) ) = ( ( RR _D ( F |` B ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A - r ) [,] ( A + r ) ) ) ) ) |
| 189 | 138 143 148 187 188 | syl22anc | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( RR _D ( ( F |` B ) |` ( ( A - r ) [,] ( A + r ) ) ) ) = ( ( RR _D ( F |` B ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A - r ) [,] ( A + r ) ) ) ) ) |
| 190 | 136 | oveq2d | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( RR _D ( ( F |` B ) |` ( ( A - r ) [,] ( A + r ) ) ) ) = ( RR _D ( F |` ( ( A - r ) [,] ( A + r ) ) ) ) ) |
| 191 | iccntr | |- ( ( ( A - r ) e. RR /\ ( A + r ) e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A - r ) [,] ( A + r ) ) ) = ( ( A - r ) (,) ( A + r ) ) ) |
|
| 192 | 73 75 191 | syl2anc | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A - r ) [,] ( A + r ) ) ) = ( ( A - r ) (,) ( A + r ) ) ) |
| 193 | 192 | reseq2d | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( RR _D ( F |` B ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A - r ) [,] ( A + r ) ) ) ) = ( ( RR _D ( F |` B ) ) |` ( ( A - r ) (,) ( A + r ) ) ) ) |
| 194 | 189 190 193 | 3eqtr3d | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( RR _D ( F |` ( ( A - r ) [,] ( A + r ) ) ) ) = ( ( RR _D ( F |` B ) ) |` ( ( A - r ) (,) ( A + r ) ) ) ) |
| 195 | 194 | dmeqd | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> dom ( RR _D ( F |` ( ( A - r ) [,] ( A + r ) ) ) ) = dom ( ( RR _D ( F |` B ) ) |` ( ( A - r ) (,) ( A + r ) ) ) ) |
| 196 | dmres | |- dom ( ( RR _D ( F |` B ) ) |` ( ( A - r ) (,) ( A + r ) ) ) = ( ( ( A - r ) (,) ( A + r ) ) i^i dom ( RR _D ( F |` B ) ) ) |
|
| 197 | 49 135 | sstrid | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( A - r ) (,) ( A + r ) ) C_ B ) |
| 198 | 197 181 | sseqtrrd | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( A - r ) (,) ( A + r ) ) C_ dom ( RR _D ( F |` B ) ) ) |
| 199 | dfss2 | |- ( ( ( A - r ) (,) ( A + r ) ) C_ dom ( RR _D ( F |` B ) ) <-> ( ( ( A - r ) (,) ( A + r ) ) i^i dom ( RR _D ( F |` B ) ) ) = ( ( A - r ) (,) ( A + r ) ) ) |
|
| 200 | 198 199 | sylib | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( ( A - r ) (,) ( A + r ) ) i^i dom ( RR _D ( F |` B ) ) ) = ( ( A - r ) (,) ( A + r ) ) ) |
| 201 | 196 200 | eqtrid | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> dom ( ( RR _D ( F |` B ) ) |` ( ( A - r ) (,) ( A + r ) ) ) = ( ( A - r ) (,) ( A + r ) ) ) |
| 202 | 195 201 | eqtrd | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> dom ( RR _D ( F |` ( ( A - r ) [,] ( A + r ) ) ) ) = ( ( A - r ) (,) ( A + r ) ) ) |
| 203 | 9 | ad4antr | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> M e. RR ) |
| 204 | 194 | fveq1d | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( RR _D ( F |` ( ( A - r ) [,] ( A + r ) ) ) ) ` x ) = ( ( ( RR _D ( F |` B ) ) |` ( ( A - r ) (,) ( A + r ) ) ) ` x ) ) |
| 205 | fvres | |- ( x e. ( ( A - r ) (,) ( A + r ) ) -> ( ( ( RR _D ( F |` B ) ) |` ( ( A - r ) (,) ( A + r ) ) ) ` x ) = ( ( RR _D ( F |` B ) ) ` x ) ) |
|
| 206 | 204 205 | sylan9eq | |- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) (,) ( A + r ) ) ) -> ( ( RR _D ( F |` ( ( A - r ) [,] ( A + r ) ) ) ) ` x ) = ( ( RR _D ( F |` B ) ) ` x ) ) |
| 207 | 174 | reseq1d | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( ( S _D F ) |` B ) = ( ( RR _D F ) |` B ) ) |
| 208 | 170 207 | eqtr4d | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( RR _D ( F |` B ) ) = ( ( S _D F ) |` B ) ) |
| 209 | 208 | fveq1d | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( ( RR _D ( F |` B ) ) ` x ) = ( ( ( S _D F ) |` B ) ` x ) ) |
| 210 | 209 | ad3antrrr | |- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) (,) ( A + r ) ) ) -> ( ( RR _D ( F |` B ) ) ` x ) = ( ( ( S _D F ) |` B ) ` x ) ) |
| 211 | 197 | sselda | |- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) (,) ( A + r ) ) ) -> x e. B ) |
| 212 | 211 | fvresd | |- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) (,) ( A + r ) ) ) -> ( ( ( S _D F ) |` B ) ` x ) = ( ( S _D F ) ` x ) ) |
| 213 | 206 210 212 | 3eqtrd | |- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) (,) ( A + r ) ) ) -> ( ( RR _D ( F |` ( ( A - r ) [,] ( A + r ) ) ) ) ` x ) = ( ( S _D F ) ` x ) ) |
| 214 | 213 | fveq2d | |- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) (,) ( A + r ) ) ) -> ( abs ` ( ( RR _D ( F |` ( ( A - r ) [,] ( A + r ) ) ) ) ` x ) ) = ( abs ` ( ( S _D F ) ` x ) ) ) |
| 215 | simp-4l | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ph ) |
|
| 216 | 215 211 10 | syl2an2r | |- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) (,) ( A + r ) ) ) -> ( abs ` ( ( S _D F ) ` x ) ) <_ M ) |
| 217 | 214 216 | eqbrtrd | |- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) (,) ( A + r ) ) ) -> ( abs ` ( ( RR _D ( F |` ( ( A - r ) [,] ( A + r ) ) ) ) ` x ) ) <_ M ) |
| 218 | 73 75 186 202 203 217 | dvlip | |- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ ( Y e. ( ( A - r ) [,] ( A + r ) ) /\ Z e. ( ( A - r ) [,] ( A + r ) ) ) ) -> ( abs ` ( ( ( F |` ( ( A - r ) [,] ( A + r ) ) ) ` Y ) - ( ( F |` ( ( A - r ) [,] ( A + r ) ) ) ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) |
| 219 | 218 | ex | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( Y e. ( ( A - r ) [,] ( A + r ) ) /\ Z e. ( ( A - r ) [,] ( A + r ) ) ) -> ( abs ` ( ( ( F |` ( ( A - r ) [,] ( A + r ) ) ) ` Y ) - ( ( F |` ( ( A - r ) [,] ( A + r ) ) ) ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) ) |
| 220 | 80 100 219 | mp2and | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( abs ` ( ( ( F |` ( ( A - r ) [,] ( A + r ) ) ) ` Y ) - ( ( F |` ( ( A - r ) [,] ( A + r ) ) ) ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) |
| 221 | 103 220 | eqbrtrrd | |- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) |
| 222 | 221 | exp32 | |- ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) -> ( ( ( A J Y ) < r /\ ( A J Z ) < r ) -> ( r < R -> ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) ) ) |
| 223 | 48 222 | sylbid | |- ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) -> ( if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) < r -> ( r < R -> ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) ) ) |
| 224 | 223 | impd | |- ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) -> ( ( if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) < r /\ r < R ) -> ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) ) |
| 225 | 45 224 | sylan2 | |- ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. QQ ) -> ( ( if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) < r /\ r < R ) -> ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) ) |
| 226 | 225 | rexlimdva | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( E. r e. QQ ( if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) < r /\ r < R ) -> ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) ) |
| 227 | 44 226 | mpd | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) |
| 228 | simpr | |- ( ( ph /\ S = CC ) -> S = CC ) |
|
| 229 | 228 | sqxpeqd | |- ( ( ph /\ S = CC ) -> ( S X. S ) = ( CC X. CC ) ) |
| 230 | 229 | reseq2d | |- ( ( ph /\ S = CC ) -> ( ( abs o. - ) |` ( S X. S ) ) = ( ( abs o. - ) |` ( CC X. CC ) ) ) |
| 231 | absf | |- abs : CC --> RR |
|
| 232 | subf | |- - : ( CC X. CC ) --> CC |
|
| 233 | fco | |- ( ( abs : CC --> RR /\ - : ( CC X. CC ) --> CC ) -> ( abs o. - ) : ( CC X. CC ) --> RR ) |
|
| 234 | 231 232 233 | mp2an | |- ( abs o. - ) : ( CC X. CC ) --> RR |
| 235 | ffn | |- ( ( abs o. - ) : ( CC X. CC ) --> RR -> ( abs o. - ) Fn ( CC X. CC ) ) |
|
| 236 | fnresdm | |- ( ( abs o. - ) Fn ( CC X. CC ) -> ( ( abs o. - ) |` ( CC X. CC ) ) = ( abs o. - ) ) |
|
| 237 | 234 235 236 | mp2b | |- ( ( abs o. - ) |` ( CC X. CC ) ) = ( abs o. - ) |
| 238 | 230 237 | eqtrdi | |- ( ( ph /\ S = CC ) -> ( ( abs o. - ) |` ( S X. S ) ) = ( abs o. - ) ) |
| 239 | 2 238 | eqtrid | |- ( ( ph /\ S = CC ) -> J = ( abs o. - ) ) |
| 240 | 239 | fveq2d | |- ( ( ph /\ S = CC ) -> ( ball ` J ) = ( ball ` ( abs o. - ) ) ) |
| 241 | 240 | oveqd | |- ( ( ph /\ S = CC ) -> ( A ( ball ` J ) R ) = ( A ( ball ` ( abs o. - ) ) R ) ) |
| 242 | 7 241 | eqtrid | |- ( ( ph /\ S = CC ) -> B = ( A ( ball ` ( abs o. - ) ) R ) ) |
| 243 | 242 | eleq2d | |- ( ( ph /\ S = CC ) -> ( Y e. B <-> Y e. ( A ( ball ` ( abs o. - ) ) R ) ) ) |
| 244 | 242 | eleq2d | |- ( ( ph /\ S = CC ) -> ( Z e. B <-> Z e. ( A ( ball ` ( abs o. - ) ) R ) ) ) |
| 245 | 243 244 | anbi12d | |- ( ( ph /\ S = CC ) -> ( ( Y e. B /\ Z e. B ) <-> ( Y e. ( A ( ball ` ( abs o. - ) ) R ) /\ Z e. ( A ( ball ` ( abs o. - ) ) R ) ) ) ) |
| 246 | 245 | biimpa | |- ( ( ( ph /\ S = CC ) /\ ( Y e. B /\ Z e. B ) ) -> ( Y e. ( A ( ball ` ( abs o. - ) ) R ) /\ Z e. ( A ( ball ` ( abs o. - ) ) R ) ) ) |
| 247 | 3 | adantr | |- ( ( ph /\ S = CC ) -> X C_ S ) |
| 248 | 247 228 | sseqtrd | |- ( ( ph /\ S = CC ) -> X C_ CC ) |
| 249 | 4 | adantr | |- ( ( ph /\ S = CC ) -> F : X --> CC ) |
| 250 | 5 | adantr | |- ( ( ph /\ S = CC ) -> A e. S ) |
| 251 | 250 228 | eleqtrd | |- ( ( ph /\ S = CC ) -> A e. CC ) |
| 252 | 6 | adantr | |- ( ( ph /\ S = CC ) -> R e. RR* ) |
| 253 | eqid | |- ( A ( ball ` ( abs o. - ) ) R ) = ( A ( ball ` ( abs o. - ) ) R ) |
|
| 254 | 8 | adantr | |- ( ( ph /\ S = CC ) -> B C_ dom ( S _D F ) ) |
| 255 | 228 | oveq1d | |- ( ( ph /\ S = CC ) -> ( S _D F ) = ( CC _D F ) ) |
| 256 | 255 | dmeqd | |- ( ( ph /\ S = CC ) -> dom ( S _D F ) = dom ( CC _D F ) ) |
| 257 | 254 242 256 | 3sstr3d | |- ( ( ph /\ S = CC ) -> ( A ( ball ` ( abs o. - ) ) R ) C_ dom ( CC _D F ) ) |
| 258 | 9 | adantr | |- ( ( ph /\ S = CC ) -> M e. RR ) |
| 259 | 10 | ex | |- ( ph -> ( x e. B -> ( abs ` ( ( S _D F ) ` x ) ) <_ M ) ) |
| 260 | 259 | adantr | |- ( ( ph /\ S = CC ) -> ( x e. B -> ( abs ` ( ( S _D F ) ` x ) ) <_ M ) ) |
| 261 | 242 | eleq2d | |- ( ( ph /\ S = CC ) -> ( x e. B <-> x e. ( A ( ball ` ( abs o. - ) ) R ) ) ) |
| 262 | 255 | fveq1d | |- ( ( ph /\ S = CC ) -> ( ( S _D F ) ` x ) = ( ( CC _D F ) ` x ) ) |
| 263 | 262 | fveq2d | |- ( ( ph /\ S = CC ) -> ( abs ` ( ( S _D F ) ` x ) ) = ( abs ` ( ( CC _D F ) ` x ) ) ) |
| 264 | 263 | breq1d | |- ( ( ph /\ S = CC ) -> ( ( abs ` ( ( S _D F ) ` x ) ) <_ M <-> ( abs ` ( ( CC _D F ) ` x ) ) <_ M ) ) |
| 265 | 260 261 264 | 3imtr3d | |- ( ( ph /\ S = CC ) -> ( x e. ( A ( ball ` ( abs o. - ) ) R ) -> ( abs ` ( ( CC _D F ) ` x ) ) <_ M ) ) |
| 266 | 265 | imp | |- ( ( ( ph /\ S = CC ) /\ x e. ( A ( ball ` ( abs o. - ) ) R ) ) -> ( abs ` ( ( CC _D F ) ` x ) ) <_ M ) |
| 267 | 248 249 251 252 253 257 258 266 | dvlipcn | |- ( ( ( ph /\ S = CC ) /\ ( Y e. ( A ( ball ` ( abs o. - ) ) R ) /\ Z e. ( A ( ball ` ( abs o. - ) ) R ) ) ) -> ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) |
| 268 | 246 267 | syldan | |- ( ( ( ph /\ S = CC ) /\ ( Y e. B /\ Z e. B ) ) -> ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) |
| 269 | 268 | an32s | |- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = CC ) -> ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) |
| 270 | elpri | |- ( S e. { RR , CC } -> ( S = RR \/ S = CC ) ) |
|
| 271 | 1 270 | syl | |- ( ph -> ( S = RR \/ S = CC ) ) |
| 272 | 271 | adantr | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( S = RR \/ S = CC ) ) |
| 273 | 227 269 272 | mpjaodan | |- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) |