This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function with derivative bounded by M is M-Lipschitz continuous. (Contributed by Mario Carneiro, 3-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvlip.a | |- ( ph -> A e. RR ) |
|
| dvlip.b | |- ( ph -> B e. RR ) |
||
| dvlip.f | |- ( ph -> F e. ( ( A [,] B ) -cn-> CC ) ) |
||
| dvlip.d | |- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
||
| dvlip.m | |- ( ph -> M e. RR ) |
||
| dvlip.l | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( abs ` ( ( RR _D F ) ` x ) ) <_ M ) |
||
| Assertion | dvlip | |- ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) -> ( abs ` ( ( F ` X ) - ( F ` Y ) ) ) <_ ( M x. ( abs ` ( X - Y ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvlip.a | |- ( ph -> A e. RR ) |
|
| 2 | dvlip.b | |- ( ph -> B e. RR ) |
|
| 3 | dvlip.f | |- ( ph -> F e. ( ( A [,] B ) -cn-> CC ) ) |
|
| 4 | dvlip.d | |- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
|
| 5 | dvlip.m | |- ( ph -> M e. RR ) |
|
| 6 | dvlip.l | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( abs ` ( ( RR _D F ) ` x ) ) <_ M ) |
|
| 7 | fveq2 | |- ( a = Y -> ( F ` a ) = ( F ` Y ) ) |
|
| 8 | 7 | oveq2d | |- ( a = Y -> ( ( F ` b ) - ( F ` a ) ) = ( ( F ` b ) - ( F ` Y ) ) ) |
| 9 | 8 | fveq2d | |- ( a = Y -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) = ( abs ` ( ( F ` b ) - ( F ` Y ) ) ) ) |
| 10 | oveq2 | |- ( a = Y -> ( b - a ) = ( b - Y ) ) |
|
| 11 | 10 | fveq2d | |- ( a = Y -> ( abs ` ( b - a ) ) = ( abs ` ( b - Y ) ) ) |
| 12 | 11 | oveq2d | |- ( a = Y -> ( M x. ( abs ` ( b - a ) ) ) = ( M x. ( abs ` ( b - Y ) ) ) ) |
| 13 | 9 12 | breq12d | |- ( a = Y -> ( ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( M x. ( abs ` ( b - a ) ) ) <-> ( abs ` ( ( F ` b ) - ( F ` Y ) ) ) <_ ( M x. ( abs ` ( b - Y ) ) ) ) ) |
| 14 | 13 | imbi2d | |- ( a = Y -> ( ( ph -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( M x. ( abs ` ( b - a ) ) ) ) <-> ( ph -> ( abs ` ( ( F ` b ) - ( F ` Y ) ) ) <_ ( M x. ( abs ` ( b - Y ) ) ) ) ) ) |
| 15 | fveq2 | |- ( b = X -> ( F ` b ) = ( F ` X ) ) |
|
| 16 | 15 | fvoveq1d | |- ( b = X -> ( abs ` ( ( F ` b ) - ( F ` Y ) ) ) = ( abs ` ( ( F ` X ) - ( F ` Y ) ) ) ) |
| 17 | fvoveq1 | |- ( b = X -> ( abs ` ( b - Y ) ) = ( abs ` ( X - Y ) ) ) |
|
| 18 | 17 | oveq2d | |- ( b = X -> ( M x. ( abs ` ( b - Y ) ) ) = ( M x. ( abs ` ( X - Y ) ) ) ) |
| 19 | 16 18 | breq12d | |- ( b = X -> ( ( abs ` ( ( F ` b ) - ( F ` Y ) ) ) <_ ( M x. ( abs ` ( b - Y ) ) ) <-> ( abs ` ( ( F ` X ) - ( F ` Y ) ) ) <_ ( M x. ( abs ` ( X - Y ) ) ) ) ) |
| 20 | 19 | imbi2d | |- ( b = X -> ( ( ph -> ( abs ` ( ( F ` b ) - ( F ` Y ) ) ) <_ ( M x. ( abs ` ( b - Y ) ) ) ) <-> ( ph -> ( abs ` ( ( F ` X ) - ( F ` Y ) ) ) <_ ( M x. ( abs ` ( X - Y ) ) ) ) ) ) |
| 21 | fveq2 | |- ( y = b -> ( F ` y ) = ( F ` b ) ) |
|
| 22 | fveq2 | |- ( x = a -> ( F ` x ) = ( F ` a ) ) |
|
| 23 | 21 22 | oveqan12d | |- ( ( y = b /\ x = a ) -> ( ( F ` y ) - ( F ` x ) ) = ( ( F ` b ) - ( F ` a ) ) ) |
| 24 | 23 | fveq2d | |- ( ( y = b /\ x = a ) -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) = ( abs ` ( ( F ` b ) - ( F ` a ) ) ) ) |
| 25 | oveq12 | |- ( ( y = b /\ x = a ) -> ( y - x ) = ( b - a ) ) |
|
| 26 | 25 | fveq2d | |- ( ( y = b /\ x = a ) -> ( abs ` ( y - x ) ) = ( abs ` ( b - a ) ) ) |
| 27 | 26 | oveq2d | |- ( ( y = b /\ x = a ) -> ( M x. ( abs ` ( y - x ) ) ) = ( M x. ( abs ` ( b - a ) ) ) ) |
| 28 | 24 27 | breq12d | |- ( ( y = b /\ x = a ) -> ( ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( M x. ( abs ` ( y - x ) ) ) <-> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( M x. ( abs ` ( b - a ) ) ) ) ) |
| 29 | 28 | ancoms | |- ( ( x = a /\ y = b ) -> ( ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( M x. ( abs ` ( y - x ) ) ) <-> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( M x. ( abs ` ( b - a ) ) ) ) ) |
| 30 | fveq2 | |- ( y = a -> ( F ` y ) = ( F ` a ) ) |
|
| 31 | fveq2 | |- ( x = b -> ( F ` x ) = ( F ` b ) ) |
|
| 32 | 30 31 | oveqan12d | |- ( ( y = a /\ x = b ) -> ( ( F ` y ) - ( F ` x ) ) = ( ( F ` a ) - ( F ` b ) ) ) |
| 33 | 32 | fveq2d | |- ( ( y = a /\ x = b ) -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) = ( abs ` ( ( F ` a ) - ( F ` b ) ) ) ) |
| 34 | oveq12 | |- ( ( y = a /\ x = b ) -> ( y - x ) = ( a - b ) ) |
|
| 35 | 34 | fveq2d | |- ( ( y = a /\ x = b ) -> ( abs ` ( y - x ) ) = ( abs ` ( a - b ) ) ) |
| 36 | 35 | oveq2d | |- ( ( y = a /\ x = b ) -> ( M x. ( abs ` ( y - x ) ) ) = ( M x. ( abs ` ( a - b ) ) ) ) |
| 37 | 33 36 | breq12d | |- ( ( y = a /\ x = b ) -> ( ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( M x. ( abs ` ( y - x ) ) ) <-> ( abs ` ( ( F ` a ) - ( F ` b ) ) ) <_ ( M x. ( abs ` ( a - b ) ) ) ) ) |
| 38 | 37 | ancoms | |- ( ( x = b /\ y = a ) -> ( ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( M x. ( abs ` ( y - x ) ) ) <-> ( abs ` ( ( F ` a ) - ( F ` b ) ) ) <_ ( M x. ( abs ` ( a - b ) ) ) ) ) |
| 39 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 40 | 1 2 39 | syl2anc | |- ( ph -> ( A [,] B ) C_ RR ) |
| 41 | cncff | |- ( F e. ( ( A [,] B ) -cn-> CC ) -> F : ( A [,] B ) --> CC ) |
|
| 42 | 3 41 | syl | |- ( ph -> F : ( A [,] B ) --> CC ) |
| 43 | ffvelcdm | |- ( ( F : ( A [,] B ) --> CC /\ a e. ( A [,] B ) ) -> ( F ` a ) e. CC ) |
|
| 44 | ffvelcdm | |- ( ( F : ( A [,] B ) --> CC /\ b e. ( A [,] B ) ) -> ( F ` b ) e. CC ) |
|
| 45 | 43 44 | anim12dan | |- ( ( F : ( A [,] B ) --> CC /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) -> ( ( F ` a ) e. CC /\ ( F ` b ) e. CC ) ) |
| 46 | 42 45 | sylan | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) -> ( ( F ` a ) e. CC /\ ( F ` b ) e. CC ) ) |
| 47 | 46 | simprd | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) -> ( F ` b ) e. CC ) |
| 48 | 46 | simpld | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) -> ( F ` a ) e. CC ) |
| 49 | 47 48 | abssubd | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) = ( abs ` ( ( F ` a ) - ( F ` b ) ) ) ) |
| 50 | ax-resscn | |- RR C_ CC |
|
| 51 | 40 50 | sstrdi | |- ( ph -> ( A [,] B ) C_ CC ) |
| 52 | 51 | sselda | |- ( ( ph /\ b e. ( A [,] B ) ) -> b e. CC ) |
| 53 | 52 | adantrl | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) -> b e. CC ) |
| 54 | 51 | sselda | |- ( ( ph /\ a e. ( A [,] B ) ) -> a e. CC ) |
| 55 | 54 | adantrr | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) -> a e. CC ) |
| 56 | 53 55 | abssubd | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) -> ( abs ` ( b - a ) ) = ( abs ` ( a - b ) ) ) |
| 57 | 56 | oveq2d | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) -> ( M x. ( abs ` ( b - a ) ) ) = ( M x. ( abs ` ( a - b ) ) ) ) |
| 58 | 49 57 | breq12d | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) -> ( ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( M x. ( abs ` ( b - a ) ) ) <-> ( abs ` ( ( F ` a ) - ( F ` b ) ) ) <_ ( M x. ( abs ` ( a - b ) ) ) ) ) |
| 59 | 42 | adantr | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> F : ( A [,] B ) --> CC ) |
| 60 | simpr2 | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> b e. ( A [,] B ) ) |
|
| 61 | 59 60 | ffvelcdmd | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( F ` b ) e. CC ) |
| 62 | simpr1 | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> a e. ( A [,] B ) ) |
|
| 63 | 59 62 | ffvelcdmd | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( F ` a ) e. CC ) |
| 64 | 61 63 | subeq0ad | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( ( ( F ` b ) - ( F ` a ) ) = 0 <-> ( F ` b ) = ( F ` a ) ) ) |
| 65 | 64 | biimpar | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) = ( F ` a ) ) -> ( ( F ` b ) - ( F ` a ) ) = 0 ) |
| 66 | 65 | abs00bd | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) = ( F ` a ) ) -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) = 0 ) |
| 67 | 40 | adantr | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( A [,] B ) C_ RR ) |
| 68 | 67 62 | sseldd | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> a e. RR ) |
| 69 | 68 | rexrd | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> a e. RR* ) |
| 70 | 67 60 | sseldd | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> b e. RR ) |
| 71 | 70 | rexrd | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> b e. RR* ) |
| 72 | ioon0 | |- ( ( a e. RR* /\ b e. RR* ) -> ( ( a (,) b ) =/= (/) <-> a < b ) ) |
|
| 73 | 69 71 72 | syl2anc | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( ( a (,) b ) =/= (/) <-> a < b ) ) |
| 74 | 5 | ad2antrr | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( a (,) b ) =/= (/) ) -> M e. RR ) |
| 75 | 70 68 | resubcld | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( b - a ) e. RR ) |
| 76 | 75 | adantr | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( a (,) b ) =/= (/) ) -> ( b - a ) e. RR ) |
| 77 | 1 | adantr | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> A e. RR ) |
| 78 | 77 | rexrd | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> A e. RR* ) |
| 79 | 2 | adantr | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> B e. RR ) |
| 80 | elicc2 | |- ( ( A e. RR /\ B e. RR ) -> ( a e. ( A [,] B ) <-> ( a e. RR /\ A <_ a /\ a <_ B ) ) ) |
|
| 81 | 77 79 80 | syl2anc | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( a e. ( A [,] B ) <-> ( a e. RR /\ A <_ a /\ a <_ B ) ) ) |
| 82 | 62 81 | mpbid | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( a e. RR /\ A <_ a /\ a <_ B ) ) |
| 83 | 82 | simp2d | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> A <_ a ) |
| 84 | iooss1 | |- ( ( A e. RR* /\ A <_ a ) -> ( a (,) b ) C_ ( A (,) b ) ) |
|
| 85 | 78 83 84 | syl2anc | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( a (,) b ) C_ ( A (,) b ) ) |
| 86 | 79 | rexrd | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> B e. RR* ) |
| 87 | elicc2 | |- ( ( A e. RR /\ B e. RR ) -> ( b e. ( A [,] B ) <-> ( b e. RR /\ A <_ b /\ b <_ B ) ) ) |
|
| 88 | 77 79 87 | syl2anc | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( b e. ( A [,] B ) <-> ( b e. RR /\ A <_ b /\ b <_ B ) ) ) |
| 89 | 60 88 | mpbid | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( b e. RR /\ A <_ b /\ b <_ B ) ) |
| 90 | 89 | simp3d | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> b <_ B ) |
| 91 | iooss2 | |- ( ( B e. RR* /\ b <_ B ) -> ( A (,) b ) C_ ( A (,) B ) ) |
|
| 92 | 86 90 91 | syl2anc | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( A (,) b ) C_ ( A (,) B ) ) |
| 93 | 85 92 | sstrd | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( a (,) b ) C_ ( A (,) B ) ) |
| 94 | ssn0 | |- ( ( ( a (,) b ) C_ ( A (,) B ) /\ ( a (,) b ) =/= (/) ) -> ( A (,) B ) =/= (/) ) |
|
| 95 | 93 94 | sylan | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( a (,) b ) =/= (/) ) -> ( A (,) B ) =/= (/) ) |
| 96 | n0 | |- ( ( A (,) B ) =/= (/) <-> E. x x e. ( A (,) B ) ) |
|
| 97 | 0red | |- ( ( ph /\ x e. ( A (,) B ) ) -> 0 e. RR ) |
|
| 98 | dvf | |- ( RR _D F ) : dom ( RR _D F ) --> CC |
|
| 99 | 4 | feq2d | |- ( ph -> ( ( RR _D F ) : dom ( RR _D F ) --> CC <-> ( RR _D F ) : ( A (,) B ) --> CC ) ) |
| 100 | 98 99 | mpbii | |- ( ph -> ( RR _D F ) : ( A (,) B ) --> CC ) |
| 101 | 100 | ffvelcdmda | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D F ) ` x ) e. CC ) |
| 102 | 101 | abscld | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( abs ` ( ( RR _D F ) ` x ) ) e. RR ) |
| 103 | 5 | adantr | |- ( ( ph /\ x e. ( A (,) B ) ) -> M e. RR ) |
| 104 | 101 | absge0d | |- ( ( ph /\ x e. ( A (,) B ) ) -> 0 <_ ( abs ` ( ( RR _D F ) ` x ) ) ) |
| 105 | 97 102 103 104 6 | letrd | |- ( ( ph /\ x e. ( A (,) B ) ) -> 0 <_ M ) |
| 106 | 105 | ex | |- ( ph -> ( x e. ( A (,) B ) -> 0 <_ M ) ) |
| 107 | 106 | exlimdv | |- ( ph -> ( E. x x e. ( A (,) B ) -> 0 <_ M ) ) |
| 108 | 107 | imp | |- ( ( ph /\ E. x x e. ( A (,) B ) ) -> 0 <_ M ) |
| 109 | 96 108 | sylan2b | |- ( ( ph /\ ( A (,) B ) =/= (/) ) -> 0 <_ M ) |
| 110 | 109 | adantlr | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( A (,) B ) =/= (/) ) -> 0 <_ M ) |
| 111 | 95 110 | syldan | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( a (,) b ) =/= (/) ) -> 0 <_ M ) |
| 112 | simpr3 | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> a <_ b ) |
|
| 113 | 70 68 | subge0d | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( 0 <_ ( b - a ) <-> a <_ b ) ) |
| 114 | 112 113 | mpbird | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> 0 <_ ( b - a ) ) |
| 115 | 114 | adantr | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( a (,) b ) =/= (/) ) -> 0 <_ ( b - a ) ) |
| 116 | 74 76 111 115 | mulge0d | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( a (,) b ) =/= (/) ) -> 0 <_ ( M x. ( b - a ) ) ) |
| 117 | 116 | ex | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( ( a (,) b ) =/= (/) -> 0 <_ ( M x. ( b - a ) ) ) ) |
| 118 | 73 117 | sylbird | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( a < b -> 0 <_ ( M x. ( b - a ) ) ) ) |
| 119 | 70 | recnd | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> b e. CC ) |
| 120 | 68 | recnd | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> a e. CC ) |
| 121 | 119 120 | subeq0ad | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( ( b - a ) = 0 <-> b = a ) ) |
| 122 | equcom | |- ( b = a <-> a = b ) |
|
| 123 | 121 122 | bitrdi | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( ( b - a ) = 0 <-> a = b ) ) |
| 124 | 0re | |- 0 e. RR |
|
| 125 | 5 | adantr | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> M e. RR ) |
| 126 | 125 | recnd | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> M e. CC ) |
| 127 | 126 | mul01d | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( M x. 0 ) = 0 ) |
| 128 | 127 | eqcomd | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> 0 = ( M x. 0 ) ) |
| 129 | eqle | |- ( ( 0 e. RR /\ 0 = ( M x. 0 ) ) -> 0 <_ ( M x. 0 ) ) |
|
| 130 | 124 128 129 | sylancr | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> 0 <_ ( M x. 0 ) ) |
| 131 | oveq2 | |- ( ( b - a ) = 0 -> ( M x. ( b - a ) ) = ( M x. 0 ) ) |
|
| 132 | 131 | breq2d | |- ( ( b - a ) = 0 -> ( 0 <_ ( M x. ( b - a ) ) <-> 0 <_ ( M x. 0 ) ) ) |
| 133 | 130 132 | syl5ibrcom | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( ( b - a ) = 0 -> 0 <_ ( M x. ( b - a ) ) ) ) |
| 134 | 123 133 | sylbird | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( a = b -> 0 <_ ( M x. ( b - a ) ) ) ) |
| 135 | 68 70 | leloed | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( a <_ b <-> ( a < b \/ a = b ) ) ) |
| 136 | 112 135 | mpbid | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( a < b \/ a = b ) ) |
| 137 | 118 134 136 | mpjaod | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> 0 <_ ( M x. ( b - a ) ) ) |
| 138 | 137 | adantr | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) = ( F ` a ) ) -> 0 <_ ( M x. ( b - a ) ) ) |
| 139 | 66 138 | eqbrtrd | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) = ( F ` a ) ) -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( M x. ( b - a ) ) ) |
| 140 | 61 63 | subcld | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( ( F ` b ) - ( F ` a ) ) e. CC ) |
| 141 | 140 | adantr | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( ( F ` b ) - ( F ` a ) ) e. CC ) |
| 142 | 141 | abscld | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) e. RR ) |
| 143 | 142 | recnd | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) e. CC ) |
| 144 | 75 | adantr | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( b - a ) e. RR ) |
| 145 | 144 | recnd | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( b - a ) e. CC ) |
| 146 | 136 | ord | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( -. a < b -> a = b ) ) |
| 147 | fveq2 | |- ( a = b -> ( F ` a ) = ( F ` b ) ) |
|
| 148 | 147 | eqcomd | |- ( a = b -> ( F ` b ) = ( F ` a ) ) |
| 149 | 146 148 | syl6 | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( -. a < b -> ( F ` b ) = ( F ` a ) ) ) |
| 150 | 149 | necon1ad | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( ( F ` b ) =/= ( F ` a ) -> a < b ) ) |
| 151 | 150 | imp | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> a < b ) |
| 152 | 68 | adantr | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> a e. RR ) |
| 153 | 70 | adantr | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> b e. RR ) |
| 154 | 152 153 | posdifd | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( a < b <-> 0 < ( b - a ) ) ) |
| 155 | 151 154 | mpbid | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> 0 < ( b - a ) ) |
| 156 | 155 | gt0ne0d | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( b - a ) =/= 0 ) |
| 157 | 143 145 156 | divrec2d | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( ( abs ` ( ( F ` b ) - ( F ` a ) ) ) / ( b - a ) ) = ( ( 1 / ( b - a ) ) x. ( abs ` ( ( F ` b ) - ( F ` a ) ) ) ) ) |
| 158 | iccss2 | |- ( ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) -> ( a [,] b ) C_ ( A [,] B ) ) |
|
| 159 | 62 60 158 | syl2anc | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( a [,] b ) C_ ( A [,] B ) ) |
| 160 | 159 | adantr | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( a [,] b ) C_ ( A [,] B ) ) |
| 161 | 160 | sselda | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ y e. ( a [,] b ) ) -> y e. ( A [,] B ) ) |
| 162 | 42 | ad2antrr | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> F : ( A [,] B ) --> CC ) |
| 163 | 162 | ffvelcdmda | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ y e. ( A [,] B ) ) -> ( F ` y ) e. CC ) |
| 164 | 161 163 | syldan | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ y e. ( a [,] b ) ) -> ( F ` y ) e. CC ) |
| 165 | 140 | ad2antrr | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ y e. ( a [,] b ) ) -> ( ( F ` b ) - ( F ` a ) ) e. CC ) |
| 166 | 64 | necon3bid | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( ( ( F ` b ) - ( F ` a ) ) =/= 0 <-> ( F ` b ) =/= ( F ` a ) ) ) |
| 167 | 166 | biimpar | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( ( F ` b ) - ( F ` a ) ) =/= 0 ) |
| 168 | 167 | adantr | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ y e. ( a [,] b ) ) -> ( ( F ` b ) - ( F ` a ) ) =/= 0 ) |
| 169 | 164 165 168 | divcld | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ y e. ( a [,] b ) ) -> ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) e. CC ) |
| 170 | 162 160 | feqresmpt | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( F |` ( a [,] b ) ) = ( y e. ( a [,] b ) |-> ( F ` y ) ) ) |
| 171 | eqidd | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( x e. CC |-> ( x / ( ( F ` b ) - ( F ` a ) ) ) ) = ( x e. CC |-> ( x / ( ( F ` b ) - ( F ` a ) ) ) ) ) |
|
| 172 | oveq1 | |- ( x = ( F ` y ) -> ( x / ( ( F ` b ) - ( F ` a ) ) ) = ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) |
|
| 173 | 164 170 171 172 | fmptco | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( ( x e. CC |-> ( x / ( ( F ` b ) - ( F ` a ) ) ) ) o. ( F |` ( a [,] b ) ) ) = ( y e. ( a [,] b ) |-> ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) |
| 174 | ref | |- Re : CC --> RR |
|
| 175 | 174 | a1i | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> Re : CC --> RR ) |
| 176 | 175 | feqmptd | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> Re = ( x e. CC |-> ( Re ` x ) ) ) |
| 177 | fveq2 | |- ( x = ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) -> ( Re ` x ) = ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) |
|
| 178 | 169 173 176 177 | fmptco | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( Re o. ( ( x e. CC |-> ( x / ( ( F ` b ) - ( F ` a ) ) ) ) o. ( F |` ( a [,] b ) ) ) ) = ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ) |
| 179 | 3 | adantr | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> F e. ( ( A [,] B ) -cn-> CC ) ) |
| 180 | rescncf | |- ( ( a [,] b ) C_ ( A [,] B ) -> ( F e. ( ( A [,] B ) -cn-> CC ) -> ( F |` ( a [,] b ) ) e. ( ( a [,] b ) -cn-> CC ) ) ) |
|
| 181 | 159 179 180 | sylc | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( F |` ( a [,] b ) ) e. ( ( a [,] b ) -cn-> CC ) ) |
| 182 | 181 | adantr | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( F |` ( a [,] b ) ) e. ( ( a [,] b ) -cn-> CC ) ) |
| 183 | eqid | |- ( x e. CC |-> ( x / ( ( F ` b ) - ( F ` a ) ) ) ) = ( x e. CC |-> ( x / ( ( F ` b ) - ( F ` a ) ) ) ) |
|
| 184 | 183 | divccncf | |- ( ( ( ( F ` b ) - ( F ` a ) ) e. CC /\ ( ( F ` b ) - ( F ` a ) ) =/= 0 ) -> ( x e. CC |-> ( x / ( ( F ` b ) - ( F ` a ) ) ) ) e. ( CC -cn-> CC ) ) |
| 185 | 141 167 184 | syl2anc | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( x e. CC |-> ( x / ( ( F ` b ) - ( F ` a ) ) ) ) e. ( CC -cn-> CC ) ) |
| 186 | 182 185 | cncfco | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( ( x e. CC |-> ( x / ( ( F ` b ) - ( F ` a ) ) ) ) o. ( F |` ( a [,] b ) ) ) e. ( ( a [,] b ) -cn-> CC ) ) |
| 187 | recncf | |- Re e. ( CC -cn-> RR ) |
|
| 188 | 187 | a1i | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> Re e. ( CC -cn-> RR ) ) |
| 189 | 186 188 | cncfco | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( Re o. ( ( x e. CC |-> ( x / ( ( F ` b ) - ( F ` a ) ) ) ) o. ( F |` ( a [,] b ) ) ) ) e. ( ( a [,] b ) -cn-> RR ) ) |
| 190 | 178 189 | eqeltrrd | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) e. ( ( a [,] b ) -cn-> RR ) ) |
| 191 | 50 | a1i | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> RR C_ CC ) |
| 192 | iccssre | |- ( ( a e. RR /\ b e. RR ) -> ( a [,] b ) C_ RR ) |
|
| 193 | 152 153 192 | syl2anc | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( a [,] b ) C_ RR ) |
| 194 | 169 | recld | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ y e. ( a [,] b ) ) -> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) e. RR ) |
| 195 | 194 | recnd | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ y e. ( a [,] b ) ) -> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) e. CC ) |
| 196 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 197 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 198 | iccntr | |- ( ( a e. RR /\ b e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( a [,] b ) ) = ( a (,) b ) ) |
|
| 199 | 68 70 198 | syl2anc | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( a [,] b ) ) = ( a (,) b ) ) |
| 200 | 199 | adantr | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( a [,] b ) ) = ( a (,) b ) ) |
| 201 | 191 193 195 196 197 200 | dvmptntr | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( RR _D ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ) = ( RR _D ( y e. ( a (,) b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ) ) |
| 202 | ioossicc | |- ( a (,) b ) C_ ( a [,] b ) |
|
| 203 | 202 | sseli | |- ( y e. ( a (,) b ) -> y e. ( a [,] b ) ) |
| 204 | 203 169 | sylan2 | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ y e. ( a (,) b ) ) -> ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) e. CC ) |
| 205 | ovexd | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ y e. ( a (,) b ) ) -> ( ( ( RR _D F ) ` y ) / ( ( F ` b ) - ( F ` a ) ) ) e. _V ) |
|
| 206 | reelprrecn | |- RR e. { RR , CC } |
|
| 207 | 206 | a1i | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> RR e. { RR , CC } ) |
| 208 | 203 164 | sylan2 | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ y e. ( a (,) b ) ) -> ( F ` y ) e. CC ) |
| 209 | 93 | adantr | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( a (,) b ) C_ ( A (,) B ) ) |
| 210 | 209 | sselda | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ y e. ( a (,) b ) ) -> y e. ( A (,) B ) ) |
| 211 | 100 | ad2antrr | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( RR _D F ) : ( A (,) B ) --> CC ) |
| 212 | 211 | ffvelcdmda | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ y e. ( A (,) B ) ) -> ( ( RR _D F ) ` y ) e. CC ) |
| 213 | 210 212 | syldan | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ y e. ( a (,) b ) ) -> ( ( RR _D F ) ` y ) e. CC ) |
| 214 | 40 | ad2antrr | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( A [,] B ) C_ RR ) |
| 215 | ioossre | |- ( a (,) b ) C_ RR |
|
| 216 | 215 | a1i | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( a (,) b ) C_ RR ) |
| 217 | 197 196 | dvres | |- ( ( ( RR C_ CC /\ F : ( A [,] B ) --> CC ) /\ ( ( A [,] B ) C_ RR /\ ( a (,) b ) C_ RR ) ) -> ( RR _D ( F |` ( a (,) b ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( a (,) b ) ) ) ) |
| 218 | 191 162 214 216 217 | syl22anc | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( RR _D ( F |` ( a (,) b ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( a (,) b ) ) ) ) |
| 219 | retop | |- ( topGen ` ran (,) ) e. Top |
|
| 220 | iooretop | |- ( a (,) b ) e. ( topGen ` ran (,) ) |
|
| 221 | isopn3i | |- ( ( ( topGen ` ran (,) ) e. Top /\ ( a (,) b ) e. ( topGen ` ran (,) ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( a (,) b ) ) = ( a (,) b ) ) |
|
| 222 | 219 220 221 | mp2an | |- ( ( int ` ( topGen ` ran (,) ) ) ` ( a (,) b ) ) = ( a (,) b ) |
| 223 | 222 | reseq2i | |- ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( a (,) b ) ) ) = ( ( RR _D F ) |` ( a (,) b ) ) |
| 224 | 218 223 | eqtrdi | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( RR _D ( F |` ( a (,) b ) ) ) = ( ( RR _D F ) |` ( a (,) b ) ) ) |
| 225 | 202 160 | sstrid | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( a (,) b ) C_ ( A [,] B ) ) |
| 226 | 162 225 | feqresmpt | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( F |` ( a (,) b ) ) = ( y e. ( a (,) b ) |-> ( F ` y ) ) ) |
| 227 | 226 | oveq2d | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( RR _D ( F |` ( a (,) b ) ) ) = ( RR _D ( y e. ( a (,) b ) |-> ( F ` y ) ) ) ) |
| 228 | 100 | adantr | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( RR _D F ) : ( A (,) B ) --> CC ) |
| 229 | 228 93 | fssresd | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( ( RR _D F ) |` ( a (,) b ) ) : ( a (,) b ) --> CC ) |
| 230 | 229 | feqmptd | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( ( RR _D F ) |` ( a (,) b ) ) = ( y e. ( a (,) b ) |-> ( ( ( RR _D F ) |` ( a (,) b ) ) ` y ) ) ) |
| 231 | 230 | adantr | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( ( RR _D F ) |` ( a (,) b ) ) = ( y e. ( a (,) b ) |-> ( ( ( RR _D F ) |` ( a (,) b ) ) ` y ) ) ) |
| 232 | fvres | |- ( y e. ( a (,) b ) -> ( ( ( RR _D F ) |` ( a (,) b ) ) ` y ) = ( ( RR _D F ) ` y ) ) |
|
| 233 | 232 | mpteq2ia | |- ( y e. ( a (,) b ) |-> ( ( ( RR _D F ) |` ( a (,) b ) ) ` y ) ) = ( y e. ( a (,) b ) |-> ( ( RR _D F ) ` y ) ) |
| 234 | 231 233 | eqtrdi | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( ( RR _D F ) |` ( a (,) b ) ) = ( y e. ( a (,) b ) |-> ( ( RR _D F ) ` y ) ) ) |
| 235 | 224 227 234 | 3eqtr3d | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( RR _D ( y e. ( a (,) b ) |-> ( F ` y ) ) ) = ( y e. ( a (,) b ) |-> ( ( RR _D F ) ` y ) ) ) |
| 236 | 207 208 213 235 141 167 | dvmptdivc | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( RR _D ( y e. ( a (,) b ) |-> ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) = ( y e. ( a (,) b ) |-> ( ( ( RR _D F ) ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) |
| 237 | 204 205 236 | dvmptre | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( RR _D ( y e. ( a (,) b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ) = ( y e. ( a (,) b ) |-> ( Re ` ( ( ( RR _D F ) ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ) |
| 238 | 201 237 | eqtrd | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( RR _D ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ) = ( y e. ( a (,) b ) |-> ( Re ` ( ( ( RR _D F ) ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ) |
| 239 | 238 | dmeqd | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> dom ( RR _D ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ) = dom ( y e. ( a (,) b ) |-> ( Re ` ( ( ( RR _D F ) ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ) |
| 240 | dmmptg | |- ( A. y e. ( a (,) b ) ( Re ` ( ( ( RR _D F ) ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) e. _V -> dom ( y e. ( a (,) b ) |-> ( Re ` ( ( ( RR _D F ) ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) = ( a (,) b ) ) |
|
| 241 | fvex | |- ( Re ` ( ( ( RR _D F ) ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) e. _V |
|
| 242 | 241 | a1i | |- ( y e. ( a (,) b ) -> ( Re ` ( ( ( RR _D F ) ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) e. _V ) |
| 243 | 240 242 | mprg | |- dom ( y e. ( a (,) b ) |-> ( Re ` ( ( ( RR _D F ) ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) = ( a (,) b ) |
| 244 | 239 243 | eqtrdi | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> dom ( RR _D ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ) = ( a (,) b ) ) |
| 245 | 152 153 151 190 244 | mvth | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> E. x e. ( a (,) b ) ( ( RR _D ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ) ` x ) = ( ( ( ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ` b ) - ( ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ` a ) ) / ( b - a ) ) ) |
| 246 | 238 | fveq1d | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( ( RR _D ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ) ` x ) = ( ( y e. ( a (,) b ) |-> ( Re ` ( ( ( RR _D F ) ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ` x ) ) |
| 247 | fveq2 | |- ( y = x -> ( ( RR _D F ) ` y ) = ( ( RR _D F ) ` x ) ) |
|
| 248 | 247 | fvoveq1d | |- ( y = x -> ( Re ` ( ( ( RR _D F ) ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) = ( Re ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) |
| 249 | eqid | |- ( y e. ( a (,) b ) |-> ( Re ` ( ( ( RR _D F ) ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) = ( y e. ( a (,) b ) |-> ( Re ` ( ( ( RR _D F ) ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) |
|
| 250 | fvex | |- ( Re ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) e. _V |
|
| 251 | 248 249 250 | fvmpt | |- ( x e. ( a (,) b ) -> ( ( y e. ( a (,) b ) |-> ( Re ` ( ( ( RR _D F ) ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ` x ) = ( Re ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) |
| 252 | 246 251 | sylan9eq | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( ( RR _D ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ) ` x ) = ( Re ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) |
| 253 | ubicc2 | |- ( ( a e. RR* /\ b e. RR* /\ a <_ b ) -> b e. ( a [,] b ) ) |
|
| 254 | 69 71 112 253 | syl3anc | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> b e. ( a [,] b ) ) |
| 255 | 254 | ad2antrr | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> b e. ( a [,] b ) ) |
| 256 | 21 | fvoveq1d | |- ( y = b -> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) = ( Re ` ( ( F ` b ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) |
| 257 | eqid | |- ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) = ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) |
|
| 258 | fvex | |- ( Re ` ( ( F ` b ) / ( ( F ` b ) - ( F ` a ) ) ) ) e. _V |
|
| 259 | 256 257 258 | fvmpt | |- ( b e. ( a [,] b ) -> ( ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ` b ) = ( Re ` ( ( F ` b ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) |
| 260 | 255 259 | syl | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ` b ) = ( Re ` ( ( F ` b ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) |
| 261 | lbicc2 | |- ( ( a e. RR* /\ b e. RR* /\ a <_ b ) -> a e. ( a [,] b ) ) |
|
| 262 | 69 71 112 261 | syl3anc | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> a e. ( a [,] b ) ) |
| 263 | 262 | ad2antrr | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> a e. ( a [,] b ) ) |
| 264 | 30 | fvoveq1d | |- ( y = a -> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) = ( Re ` ( ( F ` a ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) |
| 265 | fvex | |- ( Re ` ( ( F ` a ) / ( ( F ` b ) - ( F ` a ) ) ) ) e. _V |
|
| 266 | 264 257 265 | fvmpt | |- ( a e. ( a [,] b ) -> ( ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ` a ) = ( Re ` ( ( F ` a ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) |
| 267 | 263 266 | syl | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ` a ) = ( Re ` ( ( F ` a ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) |
| 268 | 260 267 | oveq12d | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( ( ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ` b ) - ( ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ` a ) ) = ( ( Re ` ( ( F ` b ) / ( ( F ` b ) - ( F ` a ) ) ) ) - ( Re ` ( ( F ` a ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ) |
| 269 | 61 | adantr | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( F ` b ) e. CC ) |
| 270 | 269 141 167 | divcld | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( ( F ` b ) / ( ( F ` b ) - ( F ` a ) ) ) e. CC ) |
| 271 | 63 | adantr | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( F ` a ) e. CC ) |
| 272 | 271 141 167 | divcld | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( ( F ` a ) / ( ( F ` b ) - ( F ` a ) ) ) e. CC ) |
| 273 | 270 272 | resubd | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( Re ` ( ( ( F ` b ) / ( ( F ` b ) - ( F ` a ) ) ) - ( ( F ` a ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) = ( ( Re ` ( ( F ` b ) / ( ( F ` b ) - ( F ` a ) ) ) ) - ( Re ` ( ( F ` a ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ) |
| 274 | 269 271 141 167 | divsubdird | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( ( ( F ` b ) - ( F ` a ) ) / ( ( F ` b ) - ( F ` a ) ) ) = ( ( ( F ` b ) / ( ( F ` b ) - ( F ` a ) ) ) - ( ( F ` a ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) |
| 275 | 141 167 | dividd | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( ( ( F ` b ) - ( F ` a ) ) / ( ( F ` b ) - ( F ` a ) ) ) = 1 ) |
| 276 | 274 275 | eqtr3d | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( ( ( F ` b ) / ( ( F ` b ) - ( F ` a ) ) ) - ( ( F ` a ) / ( ( F ` b ) - ( F ` a ) ) ) ) = 1 ) |
| 277 | 276 | fveq2d | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( Re ` ( ( ( F ` b ) / ( ( F ` b ) - ( F ` a ) ) ) - ( ( F ` a ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) = ( Re ` 1 ) ) |
| 278 | re1 | |- ( Re ` 1 ) = 1 |
|
| 279 | 277 278 | eqtrdi | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( Re ` ( ( ( F ` b ) / ( ( F ` b ) - ( F ` a ) ) ) - ( ( F ` a ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) = 1 ) |
| 280 | 273 279 | eqtr3d | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( ( Re ` ( ( F ` b ) / ( ( F ` b ) - ( F ` a ) ) ) ) - ( Re ` ( ( F ` a ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) = 1 ) |
| 281 | 280 | adantr | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( ( Re ` ( ( F ` b ) / ( ( F ` b ) - ( F ` a ) ) ) ) - ( Re ` ( ( F ` a ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) = 1 ) |
| 282 | 268 281 | eqtrd | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( ( ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ` b ) - ( ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ` a ) ) = 1 ) |
| 283 | 282 | oveq1d | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( ( ( ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ` b ) - ( ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ` a ) ) / ( b - a ) ) = ( 1 / ( b - a ) ) ) |
| 284 | 252 283 | eqeq12d | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( ( ( RR _D ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ) ` x ) = ( ( ( ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ` b ) - ( ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ` a ) ) / ( b - a ) ) <-> ( Re ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) = ( 1 / ( b - a ) ) ) ) |
| 285 | 284 | rexbidva | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( E. x e. ( a (,) b ) ( ( RR _D ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ) ` x ) = ( ( ( ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ` b ) - ( ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ` a ) ) / ( b - a ) ) <-> E. x e. ( a (,) b ) ( Re ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) = ( 1 / ( b - a ) ) ) ) |
| 286 | 245 285 | mpbid | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> E. x e. ( a (,) b ) ( Re ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) = ( 1 / ( b - a ) ) ) |
| 287 | 209 | sselda | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> x e. ( A (,) B ) ) |
| 288 | 211 | ffvelcdmda | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( A (,) B ) ) -> ( ( RR _D F ) ` x ) e. CC ) |
| 289 | 287 288 | syldan | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( ( RR _D F ) ` x ) e. CC ) |
| 290 | 140 | ad2antrr | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( ( F ` b ) - ( F ` a ) ) e. CC ) |
| 291 | 167 | adantr | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( ( F ` b ) - ( F ` a ) ) =/= 0 ) |
| 292 | 289 290 291 | divcld | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) e. CC ) |
| 293 | 292 | recld | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( Re ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) e. RR ) |
| 294 | 142 | adantr | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) e. RR ) |
| 295 | 293 294 | remulcld | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( ( Re ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) x. ( abs ` ( ( F ` b ) - ( F ` a ) ) ) ) e. RR ) |
| 296 | 289 | abscld | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( abs ` ( ( RR _D F ) ` x ) ) e. RR ) |
| 297 | 125 | ad2antrr | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> M e. RR ) |
| 298 | 292 | abscld | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( abs ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) e. RR ) |
| 299 | 141 | absge0d | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> 0 <_ ( abs ` ( ( F ` b ) - ( F ` a ) ) ) ) |
| 300 | 299 | adantr | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> 0 <_ ( abs ` ( ( F ` b ) - ( F ` a ) ) ) ) |
| 301 | 292 | releabsd | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( Re ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) <_ ( abs ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) |
| 302 | 293 298 294 300 301 | lemul1ad | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( ( Re ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) x. ( abs ` ( ( F ` b ) - ( F ` a ) ) ) ) <_ ( ( abs ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) x. ( abs ` ( ( F ` b ) - ( F ` a ) ) ) ) ) |
| 303 | 292 290 | absmuld | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( abs ` ( ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) x. ( ( F ` b ) - ( F ` a ) ) ) ) = ( ( abs ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) x. ( abs ` ( ( F ` b ) - ( F ` a ) ) ) ) ) |
| 304 | 289 290 291 | divcan1d | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) x. ( ( F ` b ) - ( F ` a ) ) ) = ( ( RR _D F ) ` x ) ) |
| 305 | 304 | fveq2d | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( abs ` ( ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) x. ( ( F ` b ) - ( F ` a ) ) ) ) = ( abs ` ( ( RR _D F ) ` x ) ) ) |
| 306 | 303 305 | eqtr3d | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( ( abs ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) x. ( abs ` ( ( F ` b ) - ( F ` a ) ) ) ) = ( abs ` ( ( RR _D F ) ` x ) ) ) |
| 307 | 302 306 | breqtrd | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( ( Re ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) x. ( abs ` ( ( F ` b ) - ( F ` a ) ) ) ) <_ ( abs ` ( ( RR _D F ) ` x ) ) ) |
| 308 | 6 | ad4ant14 | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( A (,) B ) ) -> ( abs ` ( ( RR _D F ) ` x ) ) <_ M ) |
| 309 | 287 308 | syldan | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( abs ` ( ( RR _D F ) ` x ) ) <_ M ) |
| 310 | 295 296 297 307 309 | letrd | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( ( Re ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) x. ( abs ` ( ( F ` b ) - ( F ` a ) ) ) ) <_ M ) |
| 311 | oveq1 | |- ( ( Re ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) = ( 1 / ( b - a ) ) -> ( ( Re ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) x. ( abs ` ( ( F ` b ) - ( F ` a ) ) ) ) = ( ( 1 / ( b - a ) ) x. ( abs ` ( ( F ` b ) - ( F ` a ) ) ) ) ) |
|
| 312 | 311 | breq1d | |- ( ( Re ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) = ( 1 / ( b - a ) ) -> ( ( ( Re ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) x. ( abs ` ( ( F ` b ) - ( F ` a ) ) ) ) <_ M <-> ( ( 1 / ( b - a ) ) x. ( abs ` ( ( F ` b ) - ( F ` a ) ) ) ) <_ M ) ) |
| 313 | 310 312 | syl5ibcom | |- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( ( Re ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) = ( 1 / ( b - a ) ) -> ( ( 1 / ( b - a ) ) x. ( abs ` ( ( F ` b ) - ( F ` a ) ) ) ) <_ M ) ) |
| 314 | 313 | rexlimdva | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( E. x e. ( a (,) b ) ( Re ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) = ( 1 / ( b - a ) ) -> ( ( 1 / ( b - a ) ) x. ( abs ` ( ( F ` b ) - ( F ` a ) ) ) ) <_ M ) ) |
| 315 | 286 314 | mpd | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( ( 1 / ( b - a ) ) x. ( abs ` ( ( F ` b ) - ( F ` a ) ) ) ) <_ M ) |
| 316 | 157 315 | eqbrtrd | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( ( abs ` ( ( F ` b ) - ( F ` a ) ) ) / ( b - a ) ) <_ M ) |
| 317 | 5 | ad2antrr | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> M e. RR ) |
| 318 | ledivmul2 | |- ( ( ( abs ` ( ( F ` b ) - ( F ` a ) ) ) e. RR /\ M e. RR /\ ( ( b - a ) e. RR /\ 0 < ( b - a ) ) ) -> ( ( ( abs ` ( ( F ` b ) - ( F ` a ) ) ) / ( b - a ) ) <_ M <-> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( M x. ( b - a ) ) ) ) |
|
| 319 | 142 317 144 155 318 | syl112anc | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( ( ( abs ` ( ( F ` b ) - ( F ` a ) ) ) / ( b - a ) ) <_ M <-> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( M x. ( b - a ) ) ) ) |
| 320 | 316 319 | mpbid | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( M x. ( b - a ) ) ) |
| 321 | 139 320 | pm2.61dane | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( M x. ( b - a ) ) ) |
| 322 | 68 70 112 | abssubge0d | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( abs ` ( b - a ) ) = ( b - a ) ) |
| 323 | 322 | oveq2d | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( M x. ( abs ` ( b - a ) ) ) = ( M x. ( b - a ) ) ) |
| 324 | 321 323 | breqtrrd | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( M x. ( abs ` ( b - a ) ) ) ) |
| 325 | 29 38 40 58 324 | wlogle | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( M x. ( abs ` ( b - a ) ) ) ) |
| 326 | 325 | expcom | |- ( ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) -> ( ph -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( M x. ( abs ` ( b - a ) ) ) ) ) |
| 327 | 14 20 326 | vtocl2ga | |- ( ( Y e. ( A [,] B ) /\ X e. ( A [,] B ) ) -> ( ph -> ( abs ` ( ( F ` X ) - ( F ` Y ) ) ) <_ ( M x. ( abs ` ( X - Y ) ) ) ) ) |
| 328 | 327 | ancoms | |- ( ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) -> ( ph -> ( abs ` ( ( F ` X ) - ( F ` Y ) ) ) <_ ( M x. ( abs ` ( X - Y ) ) ) ) ) |
| 329 | 328 | impcom | |- ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) -> ( abs ` ( ( F ` X ) - ( F ` Y ) ) ) <_ ( M x. ( abs ` ( X - Y ) ) ) ) |