This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiplication of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 29-Jun-2017) Avoid ax-mulf . (Revised by GG, 16-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulcncf.1 | |- ( ph -> ( x e. X |-> A ) e. ( X -cn-> CC ) ) |
|
| mulcncf.2 | |- ( ph -> ( x e. X |-> B ) e. ( X -cn-> CC ) ) |
||
| Assertion | mulcncf | |- ( ph -> ( x e. X |-> ( A x. B ) ) e. ( X -cn-> CC ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcncf.1 | |- ( ph -> ( x e. X |-> A ) e. ( X -cn-> CC ) ) |
|
| 2 | mulcncf.2 | |- ( ph -> ( x e. X |-> B ) e. ( X -cn-> CC ) ) |
|
| 3 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 4 | 3 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 5 | cncfrss | |- ( ( x e. X |-> A ) e. ( X -cn-> CC ) -> X C_ CC ) |
|
| 6 | 1 5 | syl | |- ( ph -> X C_ CC ) |
| 7 | resttopon | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ X C_ CC ) -> ( ( TopOpen ` CCfld ) |`t X ) e. ( TopOn ` X ) ) |
|
| 8 | 4 6 7 | sylancr | |- ( ph -> ( ( TopOpen ` CCfld ) |`t X ) e. ( TopOn ` X ) ) |
| 9 | ssid | |- CC C_ CC |
|
| 10 | eqid | |- ( ( TopOpen ` CCfld ) |`t X ) = ( ( TopOpen ` CCfld ) |`t X ) |
|
| 11 | 4 | toponrestid | |- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 12 | 3 10 11 | cncfcn | |- ( ( X C_ CC /\ CC C_ CC ) -> ( X -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t X ) Cn ( TopOpen ` CCfld ) ) ) |
| 13 | 6 9 12 | sylancl | |- ( ph -> ( X -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t X ) Cn ( TopOpen ` CCfld ) ) ) |
| 14 | 1 13 | eleqtrd | |- ( ph -> ( x e. X |-> A ) e. ( ( ( TopOpen ` CCfld ) |`t X ) Cn ( TopOpen ` CCfld ) ) ) |
| 15 | 2 13 | eleqtrd | |- ( ph -> ( x e. X |-> B ) e. ( ( ( TopOpen ` CCfld ) |`t X ) Cn ( TopOpen ` CCfld ) ) ) |
| 16 | 4 | a1i | |- ( ph -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
| 17 | 3 | mpomulcn | |- ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 18 | 17 | a1i | |- ( ph -> ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 19 | oveq12 | |- ( ( u = A /\ v = B ) -> ( u x. v ) = ( A x. B ) ) |
|
| 20 | 8 14 15 16 16 18 19 | cnmpt12 | |- ( ph -> ( x e. X |-> ( A x. B ) ) e. ( ( ( TopOpen ` CCfld ) |`t X ) Cn ( TopOpen ` CCfld ) ) ) |
| 21 | 20 13 | eleqtrrd | |- ( ph -> ( x e. X |-> ( A x. B ) ) e. ( X -cn-> CC ) ) |