This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a derivative. Note that our definition of derivative df-dv would still make sense if we demanded that x be an element of the domain instead of an interior point of the domain, but then it is possible for a non-differentiable function to have two different derivatives at a single point x when restricted to different subsets containing x ; a classic example is the absolute value function restricted to [ 0 , +oo ) and ( -oo , 0 ] . (Contributed by Mario Carneiro, 8-Aug-2014) (Revised by Mario Carneiro, 9-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvres.k | |- K = ( TopOpen ` CCfld ) |
|
| dvres.t | |- T = ( K |`t S ) |
||
| Assertion | dvres | |- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) ) -> ( S _D ( F |` B ) ) = ( ( S _D F ) |` ( ( int ` T ) ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvres.k | |- K = ( TopOpen ` CCfld ) |
|
| 2 | dvres.t | |- T = ( K |`t S ) |
|
| 3 | reldv | |- Rel ( S _D ( F |` B ) ) |
|
| 4 | relres | |- Rel ( ( S _D F ) |` ( ( int ` T ) ` B ) ) |
|
| 5 | simpll | |- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) ) -> S C_ CC ) |
|
| 6 | simplr | |- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) ) -> F : A --> CC ) |
|
| 7 | inss1 | |- ( A i^i B ) C_ A |
|
| 8 | fssres | |- ( ( F : A --> CC /\ ( A i^i B ) C_ A ) -> ( F |` ( A i^i B ) ) : ( A i^i B ) --> CC ) |
|
| 9 | 6 7 8 | sylancl | |- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) ) -> ( F |` ( A i^i B ) ) : ( A i^i B ) --> CC ) |
| 10 | resres | |- ( ( F |` A ) |` B ) = ( F |` ( A i^i B ) ) |
|
| 11 | ffn | |- ( F : A --> CC -> F Fn A ) |
|
| 12 | fnresdm | |- ( F Fn A -> ( F |` A ) = F ) |
|
| 13 | 6 11 12 | 3syl | |- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) ) -> ( F |` A ) = F ) |
| 14 | 13 | reseq1d | |- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) ) -> ( ( F |` A ) |` B ) = ( F |` B ) ) |
| 15 | 10 14 | eqtr3id | |- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) ) -> ( F |` ( A i^i B ) ) = ( F |` B ) ) |
| 16 | 15 | feq1d | |- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) ) -> ( ( F |` ( A i^i B ) ) : ( A i^i B ) --> CC <-> ( F |` B ) : ( A i^i B ) --> CC ) ) |
| 17 | 9 16 | mpbid | |- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) ) -> ( F |` B ) : ( A i^i B ) --> CC ) |
| 18 | simprl | |- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) ) -> A C_ S ) |
|
| 19 | 7 18 | sstrid | |- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) ) -> ( A i^i B ) C_ S ) |
| 20 | 5 17 19 | dvcl | |- ( ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) ) /\ x ( S _D ( F |` B ) ) y ) -> y e. CC ) |
| 21 | 20 | ex | |- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) ) -> ( x ( S _D ( F |` B ) ) y -> y e. CC ) ) |
| 22 | 5 6 18 | dvcl | |- ( ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) ) /\ x ( S _D F ) y ) -> y e. CC ) |
| 23 | 22 | ex | |- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) ) -> ( x ( S _D F ) y -> y e. CC ) ) |
| 24 | 23 | adantld | |- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) ) -> ( ( x e. ( ( int ` T ) ` B ) /\ x ( S _D F ) y ) -> y e. CC ) ) |
| 25 | eqid | |- ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) = ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) |
|
| 26 | 5 | adantr | |- ( ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) ) /\ y e. CC ) -> S C_ CC ) |
| 27 | 6 | adantr | |- ( ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) ) /\ y e. CC ) -> F : A --> CC ) |
| 28 | 18 | adantr | |- ( ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) ) /\ y e. CC ) -> A C_ S ) |
| 29 | simplrr | |- ( ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) ) /\ y e. CC ) -> B C_ S ) |
|
| 30 | simpr | |- ( ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) ) /\ y e. CC ) -> y e. CC ) |
|
| 31 | 1 2 25 26 27 28 29 30 | dvreslem | |- ( ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) ) /\ y e. CC ) -> ( x ( S _D ( F |` B ) ) y <-> ( x e. ( ( int ` T ) ` B ) /\ x ( S _D F ) y ) ) ) |
| 32 | 31 | ex | |- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) ) -> ( y e. CC -> ( x ( S _D ( F |` B ) ) y <-> ( x e. ( ( int ` T ) ` B ) /\ x ( S _D F ) y ) ) ) ) |
| 33 | 21 24 32 | pm5.21ndd | |- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) ) -> ( x ( S _D ( F |` B ) ) y <-> ( x e. ( ( int ` T ) ` B ) /\ x ( S _D F ) y ) ) ) |
| 34 | vex | |- y e. _V |
|
| 35 | 34 | brresi | |- ( x ( ( S _D F ) |` ( ( int ` T ) ` B ) ) y <-> ( x e. ( ( int ` T ) ` B ) /\ x ( S _D F ) y ) ) |
| 36 | 33 35 | bitr4di | |- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) ) -> ( x ( S _D ( F |` B ) ) y <-> x ( ( S _D F ) |` ( ( int ` T ) ` B ) ) y ) ) |
| 37 | 3 4 36 | eqbrrdiv | |- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) ) -> ( S _D ( F |` B ) ) = ( ( S _D F ) |` ( ( int ` T ) ` B ) ) ) |