This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complex function with derivative bounded by M on an open ball is M-Lipschitz continuous. (Contributed by Mario Carneiro, 18-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvlipcn.x | ⊢ ( 𝜑 → 𝑋 ⊆ ℂ ) | |
| dvlipcn.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) | ||
| dvlipcn.a | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | ||
| dvlipcn.r | ⊢ ( 𝜑 → 𝑅 ∈ ℝ* ) | ||
| dvlipcn.b | ⊢ 𝐵 = ( 𝐴 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) | ||
| dvlipcn.d | ⊢ ( 𝜑 → 𝐵 ⊆ dom ( ℂ D 𝐹 ) ) | ||
| dvlipcn.m | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | ||
| dvlipcn.l | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( abs ‘ ( ( ℂ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑀 ) | ||
| Assertion | dvlipcn | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑍 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑌 − 𝑍 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvlipcn.x | ⊢ ( 𝜑 → 𝑋 ⊆ ℂ ) | |
| 2 | dvlipcn.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) | |
| 3 | dvlipcn.a | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 4 | dvlipcn.r | ⊢ ( 𝜑 → 𝑅 ∈ ℝ* ) | |
| 5 | dvlipcn.b | ⊢ 𝐵 = ( 𝐴 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) | |
| 6 | dvlipcn.d | ⊢ ( 𝜑 → 𝐵 ⊆ dom ( ℂ D 𝐹 ) ) | |
| 7 | dvlipcn.m | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | |
| 8 | dvlipcn.l | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( abs ‘ ( ( ℂ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑀 ) | |
| 9 | 1elunit | ⊢ 1 ∈ ( 0 [,] 1 ) | |
| 10 | 0elunit | ⊢ 0 ∈ ( 0 [,] 1 ) | |
| 11 | 0red | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 0 ∈ ℝ ) | |
| 12 | 1red | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 1 ∈ ℝ ) | |
| 13 | ssidd | ⊢ ( 𝜑 → ℂ ⊆ ℂ ) | |
| 14 | 13 2 1 | dvbss | ⊢ ( 𝜑 → dom ( ℂ D 𝐹 ) ⊆ 𝑋 ) |
| 15 | 6 14 | sstrd | ⊢ ( 𝜑 → 𝐵 ⊆ 𝑋 ) |
| 16 | 15 1 | sstrd | ⊢ ( 𝜑 → 𝐵 ⊆ ℂ ) |
| 17 | 16 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐵 ⊆ ℂ ) |
| 18 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) | |
| 19 | 17 18 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ∈ ℂ ) |
| 20 | 19 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → 𝑌 ∈ ℂ ) |
| 21 | unitssre | ⊢ ( 0 [,] 1 ) ⊆ ℝ | |
| 22 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 23 | 21 22 | sstri | ⊢ ( 0 [,] 1 ) ⊆ ℂ |
| 24 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → 𝑡 ∈ ( 0 [,] 1 ) ) | |
| 25 | 23 24 | sselid | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → 𝑡 ∈ ℂ ) |
| 26 | 20 25 | mulcomd | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( 𝑌 · 𝑡 ) = ( 𝑡 · 𝑌 ) ) |
| 27 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ∈ 𝐵 ) | |
| 28 | 17 27 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ∈ ℂ ) |
| 29 | 28 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → 𝑍 ∈ ℂ ) |
| 30 | iirev | ⊢ ( 𝑡 ∈ ( 0 [,] 1 ) → ( 1 − 𝑡 ) ∈ ( 0 [,] 1 ) ) | |
| 31 | 30 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( 1 − 𝑡 ) ∈ ( 0 [,] 1 ) ) |
| 32 | 23 31 | sselid | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( 1 − 𝑡 ) ∈ ℂ ) |
| 33 | 29 32 | mulcomd | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( 𝑍 · ( 1 − 𝑡 ) ) = ( ( 1 − 𝑡 ) · 𝑍 ) ) |
| 34 | 26 33 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) = ( ( 𝑡 · 𝑌 ) + ( ( 1 − 𝑡 ) · 𝑍 ) ) ) |
| 35 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → 𝐴 ∈ ℂ ) |
| 36 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → 𝑅 ∈ ℝ* ) |
| 37 | 18 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → 𝑌 ∈ 𝐵 ) |
| 38 | 27 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → 𝑍 ∈ 𝐵 ) |
| 39 | 5 | blcvx | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ) → ( ( 𝑡 · 𝑌 ) + ( ( 1 − 𝑡 ) · 𝑍 ) ) ∈ 𝐵 ) |
| 40 | 35 36 37 38 24 39 | syl23anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( ( 𝑡 · 𝑌 ) + ( ( 1 − 𝑡 ) · 𝑍 ) ) ∈ 𝐵 ) |
| 41 | 34 40 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ∈ 𝐵 ) |
| 42 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) = ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) | |
| 43 | 2 15 | fssresd | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ ℂ ) |
| 44 | 43 | feqmptd | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) = ( 𝑧 ∈ 𝐵 ↦ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) ) ) |
| 45 | fvres | ⊢ ( 𝑧 ∈ 𝐵 → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 46 | 45 | mpteq2ia | ⊢ ( 𝑧 ∈ 𝐵 ↦ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) ) = ( 𝑧 ∈ 𝐵 ↦ ( 𝐹 ‘ 𝑧 ) ) |
| 47 | 44 46 | eqtrdi | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) = ( 𝑧 ∈ 𝐵 ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
| 48 | 47 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝐹 ↾ 𝐵 ) = ( 𝑧 ∈ 𝐵 ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
| 49 | fveq2 | ⊢ ( 𝑧 = ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) | |
| 50 | 41 42 48 49 | fmptco | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝐹 ↾ 𝐵 ) ∘ ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) = ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ) |
| 51 | 41 | fmpttd | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) : ( 0 [,] 1 ) ⟶ 𝐵 ) |
| 52 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 53 | 52 | addcn | ⊢ + ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 54 | 53 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → + ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 55 | ssid | ⊢ ℂ ⊆ ℂ | |
| 56 | cncfmptc | ⊢ ( ( 𝑌 ∈ ℂ ∧ ( 0 [,] 1 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑡 ∈ ( 0 [,] 1 ) ↦ 𝑌 ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) | |
| 57 | 23 55 56 | mp3an23 | ⊢ ( 𝑌 ∈ ℂ → ( 𝑡 ∈ ( 0 [,] 1 ) ↦ 𝑌 ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) |
| 58 | 19 57 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑡 ∈ ( 0 [,] 1 ) ↦ 𝑌 ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) |
| 59 | cncfmptid | ⊢ ( ( ( 0 [,] 1 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑡 ∈ ( 0 [,] 1 ) ↦ 𝑡 ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) | |
| 60 | 23 55 59 | mp2an | ⊢ ( 𝑡 ∈ ( 0 [,] 1 ) ↦ 𝑡 ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) |
| 61 | 60 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑡 ∈ ( 0 [,] 1 ) ↦ 𝑡 ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) |
| 62 | 58 61 | mulcncf | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝑌 · 𝑡 ) ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) |
| 63 | cncfmptc | ⊢ ( ( 𝑍 ∈ ℂ ∧ ( 0 [,] 1 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑡 ∈ ( 0 [,] 1 ) ↦ 𝑍 ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) | |
| 64 | 23 55 63 | mp3an23 | ⊢ ( 𝑍 ∈ ℂ → ( 𝑡 ∈ ( 0 [,] 1 ) ↦ 𝑍 ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) |
| 65 | 28 64 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑡 ∈ ( 0 [,] 1 ) ↦ 𝑍 ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) |
| 66 | 52 | subcn | ⊢ − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 67 | 66 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 68 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 69 | cncfmptc | ⊢ ( ( 1 ∈ ℂ ∧ ( 0 [,] 1 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑡 ∈ ( 0 [,] 1 ) ↦ 1 ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) | |
| 70 | 68 23 55 69 | mp3an | ⊢ ( 𝑡 ∈ ( 0 [,] 1 ) ↦ 1 ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) |
| 71 | 70 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑡 ∈ ( 0 [,] 1 ) ↦ 1 ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) |
| 72 | 52 67 71 61 | cncfmpt2f | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 1 − 𝑡 ) ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) |
| 73 | 65 72 | mulcncf | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝑍 · ( 1 − 𝑡 ) ) ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) |
| 74 | 52 54 62 73 | cncfmpt2f | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) |
| 75 | cncfcdm | ⊢ ( ( 𝐵 ⊆ ℂ ∧ ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) → ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ∈ ( ( 0 [,] 1 ) –cn→ 𝐵 ) ↔ ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) : ( 0 [,] 1 ) ⟶ 𝐵 ) ) | |
| 76 | 17 74 75 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ∈ ( ( 0 [,] 1 ) –cn→ 𝐵 ) ↔ ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) : ( 0 [,] 1 ) ⟶ 𝐵 ) ) |
| 77 | 51 76 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ∈ ( ( 0 [,] 1 ) –cn→ 𝐵 ) ) |
| 78 | ssidd | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ℂ ⊆ ℂ ) | |
| 79 | 43 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ ℂ ) |
| 80 | 52 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 81 | 80 | toponrestid | ⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 82 | 52 81 | dvres | ⊢ ( ( ( ℂ ⊆ ℂ ∧ 𝐹 : 𝑋 ⟶ ℂ ) ∧ ( 𝑋 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ) → ( ℂ D ( 𝐹 ↾ 𝐵 ) ) = ( ( ℂ D 𝐹 ) ↾ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) ) ) |
| 83 | 13 2 1 16 82 | syl22anc | ⊢ ( 𝜑 → ( ℂ D ( 𝐹 ↾ 𝐵 ) ) = ( ( ℂ D 𝐹 ) ↾ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) ) ) |
| 84 | 52 | cnfldtop | ⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 85 | cnxmet | ⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) | |
| 86 | 52 | cnfldtopn | ⊢ ( TopOpen ‘ ℂfld ) = ( MetOpen ‘ ( abs ∘ − ) ) |
| 87 | 86 | blopn | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℝ* ) → ( 𝐴 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ∈ ( TopOpen ‘ ℂfld ) ) |
| 88 | 85 3 4 87 | mp3an2i | ⊢ ( 𝜑 → ( 𝐴 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ∈ ( TopOpen ‘ ℂfld ) ) |
| 89 | 5 88 | eqeltrid | ⊢ ( 𝜑 → 𝐵 ∈ ( TopOpen ‘ ℂfld ) ) |
| 90 | isopn3i | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ 𝐵 ∈ ( TopOpen ‘ ℂfld ) ) → ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) = 𝐵 ) | |
| 91 | 84 89 90 | sylancr | ⊢ ( 𝜑 → ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) = 𝐵 ) |
| 92 | 91 | reseq2d | ⊢ ( 𝜑 → ( ( ℂ D 𝐹 ) ↾ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) ) = ( ( ℂ D 𝐹 ) ↾ 𝐵 ) ) |
| 93 | 83 92 | eqtrd | ⊢ ( 𝜑 → ( ℂ D ( 𝐹 ↾ 𝐵 ) ) = ( ( ℂ D 𝐹 ) ↾ 𝐵 ) ) |
| 94 | 93 | dmeqd | ⊢ ( 𝜑 → dom ( ℂ D ( 𝐹 ↾ 𝐵 ) ) = dom ( ( ℂ D 𝐹 ) ↾ 𝐵 ) ) |
| 95 | dmres | ⊢ dom ( ( ℂ D 𝐹 ) ↾ 𝐵 ) = ( 𝐵 ∩ dom ( ℂ D 𝐹 ) ) | |
| 96 | dfss2 | ⊢ ( 𝐵 ⊆ dom ( ℂ D 𝐹 ) ↔ ( 𝐵 ∩ dom ( ℂ D 𝐹 ) ) = 𝐵 ) | |
| 97 | 6 96 | sylib | ⊢ ( 𝜑 → ( 𝐵 ∩ dom ( ℂ D 𝐹 ) ) = 𝐵 ) |
| 98 | 95 97 | eqtrid | ⊢ ( 𝜑 → dom ( ( ℂ D 𝐹 ) ↾ 𝐵 ) = 𝐵 ) |
| 99 | 94 98 | eqtrd | ⊢ ( 𝜑 → dom ( ℂ D ( 𝐹 ↾ 𝐵 ) ) = 𝐵 ) |
| 100 | 99 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → dom ( ℂ D ( 𝐹 ↾ 𝐵 ) ) = 𝐵 ) |
| 101 | dvcn | ⊢ ( ( ( ℂ ⊆ ℂ ∧ ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ dom ( ℂ D ( 𝐹 ↾ 𝐵 ) ) = 𝐵 ) → ( 𝐹 ↾ 𝐵 ) ∈ ( 𝐵 –cn→ ℂ ) ) | |
| 102 | 78 79 17 100 101 | syl31anc | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝐹 ↾ 𝐵 ) ∈ ( 𝐵 –cn→ ℂ ) ) |
| 103 | 77 102 | cncfco | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝐹 ↾ 𝐵 ) ∘ ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) |
| 104 | 50 103 | eqeltrrd | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) |
| 105 | 22 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ℝ ⊆ ℂ ) |
| 106 | 21 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 0 [,] 1 ) ⊆ ℝ ) |
| 107 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → 𝐹 : 𝑋 ⟶ ℂ ) |
| 108 | 15 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → 𝐵 ⊆ 𝑋 ) |
| 109 | 108 41 | sseldd | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ∈ 𝑋 ) |
| 110 | 107 109 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ∈ ℂ ) |
| 111 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 112 | 1re | ⊢ 1 ∈ ℝ | |
| 113 | iccntr | ⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 0 [,] 1 ) ) = ( 0 (,) 1 ) ) | |
| 114 | 11 112 113 | sylancl | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 0 [,] 1 ) ) = ( 0 (,) 1 ) ) |
| 115 | 105 106 110 111 52 114 | dvmptntr | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ℝ D ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ) = ( ℝ D ( 𝑡 ∈ ( 0 (,) 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ) ) |
| 116 | reelprrecn | ⊢ ℝ ∈ { ℝ , ℂ } | |
| 117 | 116 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ℝ ∈ { ℝ , ℂ } ) |
| 118 | cnelprrecn | ⊢ ℂ ∈ { ℝ , ℂ } | |
| 119 | 118 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ℂ ∈ { ℝ , ℂ } ) |
| 120 | ioossicc | ⊢ ( 0 (,) 1 ) ⊆ ( 0 [,] 1 ) | |
| 121 | 120 | sseli | ⊢ ( 𝑡 ∈ ( 0 (,) 1 ) → 𝑡 ∈ ( 0 [,] 1 ) ) |
| 122 | 121 41 | sylan2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ∈ 𝐵 ) |
| 123 | 19 28 | subcld | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑌 − 𝑍 ) ∈ ℂ ) |
| 124 | 123 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( 𝑌 − 𝑍 ) ∈ ℂ ) |
| 125 | 15 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐵 ⊆ 𝑋 ) |
| 126 | 125 | sselda | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ 𝑋 ) |
| 127 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐹 : 𝑋 ⟶ ℂ ) |
| 128 | 127 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 129 | 126 128 | syldan | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 130 | fvexd | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( ( ℂ D 𝐹 ) ‘ 𝑧 ) ∈ V ) | |
| 131 | 19 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → 𝑌 ∈ ℂ ) |
| 132 | 121 25 | sylan2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → 𝑡 ∈ ℂ ) |
| 133 | 131 132 | mulcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( 𝑌 · 𝑡 ) ∈ ℂ ) |
| 134 | 1red | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → 1 ∈ ℝ ) | |
| 135 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ℝ ) → 𝑡 ∈ ℝ ) | |
| 136 | 135 | recnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ℝ ) → 𝑡 ∈ ℂ ) |
| 137 | 1red | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ℝ ) → 1 ∈ ℝ ) | |
| 138 | 117 | dvmptid | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ℝ D ( 𝑡 ∈ ℝ ↦ 𝑡 ) ) = ( 𝑡 ∈ ℝ ↦ 1 ) ) |
| 139 | ioossre | ⊢ ( 0 (,) 1 ) ⊆ ℝ | |
| 140 | 139 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 0 (,) 1 ) ⊆ ℝ ) |
| 141 | iooretop | ⊢ ( 0 (,) 1 ) ∈ ( topGen ‘ ran (,) ) | |
| 142 | 141 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 0 (,) 1 ) ∈ ( topGen ‘ ran (,) ) ) |
| 143 | 117 136 137 138 140 111 52 142 | dvmptres | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ℝ D ( 𝑡 ∈ ( 0 (,) 1 ) ↦ 𝑡 ) ) = ( 𝑡 ∈ ( 0 (,) 1 ) ↦ 1 ) ) |
| 144 | 117 132 134 143 19 | dvmptcmul | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ℝ D ( 𝑡 ∈ ( 0 (,) 1 ) ↦ ( 𝑌 · 𝑡 ) ) ) = ( 𝑡 ∈ ( 0 (,) 1 ) ↦ ( 𝑌 · 1 ) ) ) |
| 145 | 19 | mulridd | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑌 · 1 ) = 𝑌 ) |
| 146 | 145 | mpteq2dv | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑡 ∈ ( 0 (,) 1 ) ↦ ( 𝑌 · 1 ) ) = ( 𝑡 ∈ ( 0 (,) 1 ) ↦ 𝑌 ) ) |
| 147 | 144 146 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ℝ D ( 𝑡 ∈ ( 0 (,) 1 ) ↦ ( 𝑌 · 𝑡 ) ) ) = ( 𝑡 ∈ ( 0 (,) 1 ) ↦ 𝑌 ) ) |
| 148 | 28 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → 𝑍 ∈ ℂ ) |
| 149 | 121 32 | sylan2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( 1 − 𝑡 ) ∈ ℂ ) |
| 150 | 148 149 | mulcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( 𝑍 · ( 1 − 𝑡 ) ) ∈ ℂ ) |
| 151 | negex | ⊢ - 𝑍 ∈ V | |
| 152 | 151 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → - 𝑍 ∈ V ) |
| 153 | negex | ⊢ - 1 ∈ V | |
| 154 | 153 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → - 1 ∈ V ) |
| 155 | 1cnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → 1 ∈ ℂ ) | |
| 156 | 0red | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → 0 ∈ ℝ ) | |
| 157 | 1cnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ℝ ) → 1 ∈ ℂ ) | |
| 158 | 0red | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ℝ ) → 0 ∈ ℝ ) | |
| 159 | 1cnd | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 1 ∈ ℂ ) | |
| 160 | 117 159 | dvmptc | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ℝ D ( 𝑡 ∈ ℝ ↦ 1 ) ) = ( 𝑡 ∈ ℝ ↦ 0 ) ) |
| 161 | 117 157 158 160 140 111 52 142 | dvmptres | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ℝ D ( 𝑡 ∈ ( 0 (,) 1 ) ↦ 1 ) ) = ( 𝑡 ∈ ( 0 (,) 1 ) ↦ 0 ) ) |
| 162 | 117 155 156 161 132 134 143 | dvmptsub | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ℝ D ( 𝑡 ∈ ( 0 (,) 1 ) ↦ ( 1 − 𝑡 ) ) ) = ( 𝑡 ∈ ( 0 (,) 1 ) ↦ ( 0 − 1 ) ) ) |
| 163 | df-neg | ⊢ - 1 = ( 0 − 1 ) | |
| 164 | 163 | mpteq2i | ⊢ ( 𝑡 ∈ ( 0 (,) 1 ) ↦ - 1 ) = ( 𝑡 ∈ ( 0 (,) 1 ) ↦ ( 0 − 1 ) ) |
| 165 | 162 164 | eqtr4di | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ℝ D ( 𝑡 ∈ ( 0 (,) 1 ) ↦ ( 1 − 𝑡 ) ) ) = ( 𝑡 ∈ ( 0 (,) 1 ) ↦ - 1 ) ) |
| 166 | 117 149 154 165 28 | dvmptcmul | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ℝ D ( 𝑡 ∈ ( 0 (,) 1 ) ↦ ( 𝑍 · ( 1 − 𝑡 ) ) ) ) = ( 𝑡 ∈ ( 0 (,) 1 ) ↦ ( 𝑍 · - 1 ) ) ) |
| 167 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 168 | mulcom | ⊢ ( ( 𝑍 ∈ ℂ ∧ - 1 ∈ ℂ ) → ( 𝑍 · - 1 ) = ( - 1 · 𝑍 ) ) | |
| 169 | 28 167 168 | sylancl | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑍 · - 1 ) = ( - 1 · 𝑍 ) ) |
| 170 | 28 | mulm1d | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( - 1 · 𝑍 ) = - 𝑍 ) |
| 171 | 169 170 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑍 · - 1 ) = - 𝑍 ) |
| 172 | 171 | mpteq2dv | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑡 ∈ ( 0 (,) 1 ) ↦ ( 𝑍 · - 1 ) ) = ( 𝑡 ∈ ( 0 (,) 1 ) ↦ - 𝑍 ) ) |
| 173 | 166 172 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ℝ D ( 𝑡 ∈ ( 0 (,) 1 ) ↦ ( 𝑍 · ( 1 − 𝑡 ) ) ) ) = ( 𝑡 ∈ ( 0 (,) 1 ) ↦ - 𝑍 ) ) |
| 174 | 117 133 131 147 150 152 173 | dvmptadd | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ℝ D ( 𝑡 ∈ ( 0 (,) 1 ) ↦ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) = ( 𝑡 ∈ ( 0 (,) 1 ) ↦ ( 𝑌 + - 𝑍 ) ) ) |
| 175 | 19 28 | negsubd | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑌 + - 𝑍 ) = ( 𝑌 − 𝑍 ) ) |
| 176 | 175 | mpteq2dv | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑡 ∈ ( 0 (,) 1 ) ↦ ( 𝑌 + - 𝑍 ) ) = ( 𝑡 ∈ ( 0 (,) 1 ) ↦ ( 𝑌 − 𝑍 ) ) ) |
| 177 | 174 176 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ℝ D ( 𝑡 ∈ ( 0 (,) 1 ) ↦ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) = ( 𝑡 ∈ ( 0 (,) 1 ) ↦ ( 𝑌 − 𝑍 ) ) ) |
| 178 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑋 ⊆ ℂ ) |
| 179 | 78 127 178 17 82 | syl22anc | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ℂ D ( 𝐹 ↾ 𝐵 ) ) = ( ( ℂ D 𝐹 ) ↾ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) ) ) |
| 180 | 91 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) = 𝐵 ) |
| 181 | 180 | reseq2d | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ℂ D 𝐹 ) ↾ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) ) = ( ( ℂ D 𝐹 ) ↾ 𝐵 ) ) |
| 182 | 179 181 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ℂ D ( 𝐹 ↾ 𝐵 ) ) = ( ( ℂ D 𝐹 ) ↾ 𝐵 ) ) |
| 183 | 48 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ℂ D ( 𝐹 ↾ 𝐵 ) ) = ( ℂ D ( 𝑧 ∈ 𝐵 ↦ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 184 | dvfcn | ⊢ ( ℂ D ( 𝐹 ↾ 𝐵 ) ) : dom ( ℂ D ( 𝐹 ↾ 𝐵 ) ) ⟶ ℂ | |
| 185 | 100 | feq2d | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ℂ D ( 𝐹 ↾ 𝐵 ) ) : dom ( ℂ D ( 𝐹 ↾ 𝐵 ) ) ⟶ ℂ ↔ ( ℂ D ( 𝐹 ↾ 𝐵 ) ) : 𝐵 ⟶ ℂ ) ) |
| 186 | 184 185 | mpbii | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ℂ D ( 𝐹 ↾ 𝐵 ) ) : 𝐵 ⟶ ℂ ) |
| 187 | 182 | feq1d | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ℂ D ( 𝐹 ↾ 𝐵 ) ) : 𝐵 ⟶ ℂ ↔ ( ( ℂ D 𝐹 ) ↾ 𝐵 ) : 𝐵 ⟶ ℂ ) ) |
| 188 | 186 187 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ℂ D 𝐹 ) ↾ 𝐵 ) : 𝐵 ⟶ ℂ ) |
| 189 | 188 | feqmptd | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ℂ D 𝐹 ) ↾ 𝐵 ) = ( 𝑧 ∈ 𝐵 ↦ ( ( ( ℂ D 𝐹 ) ↾ 𝐵 ) ‘ 𝑧 ) ) ) |
| 190 | fvres | ⊢ ( 𝑧 ∈ 𝐵 → ( ( ( ℂ D 𝐹 ) ↾ 𝐵 ) ‘ 𝑧 ) = ( ( ℂ D 𝐹 ) ‘ 𝑧 ) ) | |
| 191 | 190 | mpteq2ia | ⊢ ( 𝑧 ∈ 𝐵 ↦ ( ( ( ℂ D 𝐹 ) ↾ 𝐵 ) ‘ 𝑧 ) ) = ( 𝑧 ∈ 𝐵 ↦ ( ( ℂ D 𝐹 ) ‘ 𝑧 ) ) |
| 192 | 189 191 | eqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ℂ D 𝐹 ) ↾ 𝐵 ) = ( 𝑧 ∈ 𝐵 ↦ ( ( ℂ D 𝐹 ) ‘ 𝑧 ) ) ) |
| 193 | 182 183 192 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ℂ D ( 𝑧 ∈ 𝐵 ↦ ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ 𝐵 ↦ ( ( ℂ D 𝐹 ) ‘ 𝑧 ) ) ) |
| 194 | fveq2 | ⊢ ( 𝑧 = ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) → ( ( ℂ D 𝐹 ) ‘ 𝑧 ) = ( ( ℂ D 𝐹 ) ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) | |
| 195 | 117 119 122 124 129 130 177 193 49 194 | dvmptco | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ℝ D ( 𝑡 ∈ ( 0 (,) 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ) = ( 𝑡 ∈ ( 0 (,) 1 ) ↦ ( ( ( ℂ D 𝐹 ) ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) · ( 𝑌 − 𝑍 ) ) ) ) |
| 196 | 115 195 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ℝ D ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ) = ( 𝑡 ∈ ( 0 (,) 1 ) ↦ ( ( ( ℂ D 𝐹 ) ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) · ( 𝑌 − 𝑍 ) ) ) ) |
| 197 | 196 | dmeqd | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → dom ( ℝ D ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ) = dom ( 𝑡 ∈ ( 0 (,) 1 ) ↦ ( ( ( ℂ D 𝐹 ) ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) · ( 𝑌 − 𝑍 ) ) ) ) |
| 198 | ovex | ⊢ ( ( ( ℂ D 𝐹 ) ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) · ( 𝑌 − 𝑍 ) ) ∈ V | |
| 199 | 198 | rgenw | ⊢ ∀ 𝑡 ∈ ( 0 (,) 1 ) ( ( ( ℂ D 𝐹 ) ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) · ( 𝑌 − 𝑍 ) ) ∈ V |
| 200 | dmmptg | ⊢ ( ∀ 𝑡 ∈ ( 0 (,) 1 ) ( ( ( ℂ D 𝐹 ) ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) · ( 𝑌 − 𝑍 ) ) ∈ V → dom ( 𝑡 ∈ ( 0 (,) 1 ) ↦ ( ( ( ℂ D 𝐹 ) ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) · ( 𝑌 − 𝑍 ) ) ) = ( 0 (,) 1 ) ) | |
| 201 | 199 200 | mp1i | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → dom ( 𝑡 ∈ ( 0 (,) 1 ) ↦ ( ( ( ℂ D 𝐹 ) ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) · ( 𝑌 − 𝑍 ) ) ) = ( 0 (,) 1 ) ) |
| 202 | 197 201 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → dom ( ℝ D ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ) = ( 0 (,) 1 ) ) |
| 203 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑀 ∈ ℝ ) |
| 204 | 123 | abscld | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( abs ‘ ( 𝑌 − 𝑍 ) ) ∈ ℝ ) |
| 205 | 203 204 | remulcld | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑀 · ( abs ‘ ( 𝑌 − 𝑍 ) ) ) ∈ ℝ ) |
| 206 | 196 | fveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ℝ D ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ) ‘ 𝑡 ) = ( ( 𝑡 ∈ ( 0 (,) 1 ) ↦ ( ( ( ℂ D 𝐹 ) ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) · ( 𝑌 − 𝑍 ) ) ) ‘ 𝑡 ) ) |
| 207 | eqid | ⊢ ( 𝑡 ∈ ( 0 (,) 1 ) ↦ ( ( ( ℂ D 𝐹 ) ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) · ( 𝑌 − 𝑍 ) ) ) = ( 𝑡 ∈ ( 0 (,) 1 ) ↦ ( ( ( ℂ D 𝐹 ) ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) · ( 𝑌 − 𝑍 ) ) ) | |
| 208 | 207 | fvmpt2 | ⊢ ( ( 𝑡 ∈ ( 0 (,) 1 ) ∧ ( ( ( ℂ D 𝐹 ) ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) · ( 𝑌 − 𝑍 ) ) ∈ V ) → ( ( 𝑡 ∈ ( 0 (,) 1 ) ↦ ( ( ( ℂ D 𝐹 ) ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) · ( 𝑌 − 𝑍 ) ) ) ‘ 𝑡 ) = ( ( ( ℂ D 𝐹 ) ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) · ( 𝑌 − 𝑍 ) ) ) |
| 209 | 198 208 | mpan2 | ⊢ ( 𝑡 ∈ ( 0 (,) 1 ) → ( ( 𝑡 ∈ ( 0 (,) 1 ) ↦ ( ( ( ℂ D 𝐹 ) ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) · ( 𝑌 − 𝑍 ) ) ) ‘ 𝑡 ) = ( ( ( ℂ D 𝐹 ) ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) · ( 𝑌 − 𝑍 ) ) ) |
| 210 | 206 209 | sylan9eq | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( ( ℝ D ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ) ‘ 𝑡 ) = ( ( ( ℂ D 𝐹 ) ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) · ( 𝑌 − 𝑍 ) ) ) |
| 211 | 210 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( abs ‘ ( ( ℝ D ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ) ‘ 𝑡 ) ) = ( abs ‘ ( ( ( ℂ D 𝐹 ) ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) · ( 𝑌 − 𝑍 ) ) ) ) |
| 212 | dvfcn | ⊢ ( ℂ D 𝐹 ) : dom ( ℂ D 𝐹 ) ⟶ ℂ | |
| 213 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → 𝐵 ⊆ dom ( ℂ D 𝐹 ) ) |
| 214 | 213 122 | sseldd | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ∈ dom ( ℂ D 𝐹 ) ) |
| 215 | ffvelcdm | ⊢ ( ( ( ℂ D 𝐹 ) : dom ( ℂ D 𝐹 ) ⟶ ℂ ∧ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ∈ dom ( ℂ D 𝐹 ) ) → ( ( ℂ D 𝐹 ) ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ∈ ℂ ) | |
| 216 | 212 214 215 | sylancr | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( ( ℂ D 𝐹 ) ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ∈ ℂ ) |
| 217 | 216 124 | absmuld | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( abs ‘ ( ( ( ℂ D 𝐹 ) ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) · ( 𝑌 − 𝑍 ) ) ) = ( ( abs ‘ ( ( ℂ D 𝐹 ) ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) · ( abs ‘ ( 𝑌 − 𝑍 ) ) ) ) |
| 218 | 211 217 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( abs ‘ ( ( ℝ D ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ) ‘ 𝑡 ) ) = ( ( abs ‘ ( ( ℂ D 𝐹 ) ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) · ( abs ‘ ( 𝑌 − 𝑍 ) ) ) ) |
| 219 | 216 | abscld | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( abs ‘ ( ( ℂ D 𝐹 ) ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ∈ ℝ ) |
| 220 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → 𝑀 ∈ ℝ ) |
| 221 | 124 | abscld | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( abs ‘ ( 𝑌 − 𝑍 ) ) ∈ ℝ ) |
| 222 | 124 | absge0d | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → 0 ≤ ( abs ‘ ( 𝑌 − 𝑍 ) ) ) |
| 223 | 2fveq3 | ⊢ ( 𝑦 = ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) → ( abs ‘ ( ( ℂ D 𝐹 ) ‘ 𝑦 ) ) = ( abs ‘ ( ( ℂ D 𝐹 ) ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ) | |
| 224 | 223 | breq1d | ⊢ ( 𝑦 = ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) → ( ( abs ‘ ( ( ℂ D 𝐹 ) ‘ 𝑦 ) ) ≤ 𝑀 ↔ ( abs ‘ ( ( ℂ D 𝐹 ) ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ≤ 𝑀 ) ) |
| 225 | 8 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( abs ‘ ( ( ℂ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑀 ) |
| 226 | 2fveq3 | ⊢ ( 𝑥 = 𝑦 → ( abs ‘ ( ( ℂ D 𝐹 ) ‘ 𝑥 ) ) = ( abs ‘ ( ( ℂ D 𝐹 ) ‘ 𝑦 ) ) ) | |
| 227 | 226 | breq1d | ⊢ ( 𝑥 = 𝑦 → ( ( abs ‘ ( ( ℂ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑀 ↔ ( abs ‘ ( ( ℂ D 𝐹 ) ‘ 𝑦 ) ) ≤ 𝑀 ) ) |
| 228 | 227 | cbvralvw | ⊢ ( ∀ 𝑥 ∈ 𝐵 ( abs ‘ ( ( ℂ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑀 ↔ ∀ 𝑦 ∈ 𝐵 ( abs ‘ ( ( ℂ D 𝐹 ) ‘ 𝑦 ) ) ≤ 𝑀 ) |
| 229 | 225 228 | sylib | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐵 ( abs ‘ ( ( ℂ D 𝐹 ) ‘ 𝑦 ) ) ≤ 𝑀 ) |
| 230 | 229 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ∀ 𝑦 ∈ 𝐵 ( abs ‘ ( ( ℂ D 𝐹 ) ‘ 𝑦 ) ) ≤ 𝑀 ) |
| 231 | 224 230 122 | rspcdva | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( abs ‘ ( ( ℂ D 𝐹 ) ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ≤ 𝑀 ) |
| 232 | 219 220 221 222 231 | lemul1ad | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( ( abs ‘ ( ( ℂ D 𝐹 ) ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) · ( abs ‘ ( 𝑌 − 𝑍 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑌 − 𝑍 ) ) ) ) |
| 233 | 218 232 | eqbrtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( abs ‘ ( ( ℝ D ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ) ‘ 𝑡 ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑌 − 𝑍 ) ) ) ) |
| 234 | 233 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ∀ 𝑡 ∈ ( 0 (,) 1 ) ( abs ‘ ( ( ℝ D ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ) ‘ 𝑡 ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑌 − 𝑍 ) ) ) ) |
| 235 | nfv | ⊢ Ⅎ 𝑧 ( abs ‘ ( ( ℝ D ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ) ‘ 𝑡 ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑌 − 𝑍 ) ) ) | |
| 236 | nfcv | ⊢ Ⅎ 𝑡 abs | |
| 237 | nfcv | ⊢ Ⅎ 𝑡 ℝ | |
| 238 | nfcv | ⊢ Ⅎ 𝑡 D | |
| 239 | nfmpt1 | ⊢ Ⅎ 𝑡 ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) | |
| 240 | 237 238 239 | nfov | ⊢ Ⅎ 𝑡 ( ℝ D ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ) |
| 241 | nfcv | ⊢ Ⅎ 𝑡 𝑧 | |
| 242 | 240 241 | nffv | ⊢ Ⅎ 𝑡 ( ( ℝ D ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ) ‘ 𝑧 ) |
| 243 | 236 242 | nffv | ⊢ Ⅎ 𝑡 ( abs ‘ ( ( ℝ D ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ) ‘ 𝑧 ) ) |
| 244 | nfcv | ⊢ Ⅎ 𝑡 ≤ | |
| 245 | nfcv | ⊢ Ⅎ 𝑡 ( 𝑀 · ( abs ‘ ( 𝑌 − 𝑍 ) ) ) | |
| 246 | 243 244 245 | nfbr | ⊢ Ⅎ 𝑡 ( abs ‘ ( ( ℝ D ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ) ‘ 𝑧 ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑌 − 𝑍 ) ) ) |
| 247 | 2fveq3 | ⊢ ( 𝑡 = 𝑧 → ( abs ‘ ( ( ℝ D ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ) ‘ 𝑡 ) ) = ( abs ‘ ( ( ℝ D ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ) ‘ 𝑧 ) ) ) | |
| 248 | 247 | breq1d | ⊢ ( 𝑡 = 𝑧 → ( ( abs ‘ ( ( ℝ D ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ) ‘ 𝑡 ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑌 − 𝑍 ) ) ) ↔ ( abs ‘ ( ( ℝ D ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ) ‘ 𝑧 ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑌 − 𝑍 ) ) ) ) ) |
| 249 | 235 246 248 | cbvralw | ⊢ ( ∀ 𝑡 ∈ ( 0 (,) 1 ) ( abs ‘ ( ( ℝ D ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ) ‘ 𝑡 ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑌 − 𝑍 ) ) ) ↔ ∀ 𝑧 ∈ ( 0 (,) 1 ) ( abs ‘ ( ( ℝ D ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ) ‘ 𝑧 ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑌 − 𝑍 ) ) ) ) |
| 250 | 234 249 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ∀ 𝑧 ∈ ( 0 (,) 1 ) ( abs ‘ ( ( ℝ D ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ) ‘ 𝑧 ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑌 − 𝑍 ) ) ) ) |
| 251 | 250 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑧 ∈ ( 0 (,) 1 ) ) → ( abs ‘ ( ( ℝ D ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ) ‘ 𝑧 ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑌 − 𝑍 ) ) ) ) |
| 252 | 11 12 104 202 205 251 | dvlip | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 1 ∈ ( 0 [,] 1 ) ∧ 0 ∈ ( 0 [,] 1 ) ) ) → ( abs ‘ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ‘ 1 ) − ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ‘ 0 ) ) ) ≤ ( ( 𝑀 · ( abs ‘ ( 𝑌 − 𝑍 ) ) ) · ( abs ‘ ( 1 − 0 ) ) ) ) |
| 253 | 9 10 252 | mpanr12 | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( abs ‘ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ‘ 1 ) − ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ‘ 0 ) ) ) ≤ ( ( 𝑀 · ( abs ‘ ( 𝑌 − 𝑍 ) ) ) · ( abs ‘ ( 1 − 0 ) ) ) ) |
| 254 | oveq2 | ⊢ ( 𝑡 = 1 → ( 𝑌 · 𝑡 ) = ( 𝑌 · 1 ) ) | |
| 255 | oveq2 | ⊢ ( 𝑡 = 1 → ( 1 − 𝑡 ) = ( 1 − 1 ) ) | |
| 256 | 1m1e0 | ⊢ ( 1 − 1 ) = 0 | |
| 257 | 255 256 | eqtrdi | ⊢ ( 𝑡 = 1 → ( 1 − 𝑡 ) = 0 ) |
| 258 | 257 | oveq2d | ⊢ ( 𝑡 = 1 → ( 𝑍 · ( 1 − 𝑡 ) ) = ( 𝑍 · 0 ) ) |
| 259 | 254 258 | oveq12d | ⊢ ( 𝑡 = 1 → ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) = ( ( 𝑌 · 1 ) + ( 𝑍 · 0 ) ) ) |
| 260 | 259 | fveq2d | ⊢ ( 𝑡 = 1 → ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) = ( 𝐹 ‘ ( ( 𝑌 · 1 ) + ( 𝑍 · 0 ) ) ) ) |
| 261 | eqid | ⊢ ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) = ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) | |
| 262 | fvex | ⊢ ( 𝐹 ‘ ( ( 𝑌 · 1 ) + ( 𝑍 · 0 ) ) ) ∈ V | |
| 263 | 260 261 262 | fvmpt | ⊢ ( 1 ∈ ( 0 [,] 1 ) → ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ‘ 1 ) = ( 𝐹 ‘ ( ( 𝑌 · 1 ) + ( 𝑍 · 0 ) ) ) ) |
| 264 | 9 263 | ax-mp | ⊢ ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ‘ 1 ) = ( 𝐹 ‘ ( ( 𝑌 · 1 ) + ( 𝑍 · 0 ) ) ) |
| 265 | 28 | mul01d | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑍 · 0 ) = 0 ) |
| 266 | 145 265 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑌 · 1 ) + ( 𝑍 · 0 ) ) = ( 𝑌 + 0 ) ) |
| 267 | 19 | addridd | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑌 + 0 ) = 𝑌 ) |
| 268 | 266 267 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑌 · 1 ) + ( 𝑍 · 0 ) ) = 𝑌 ) |
| 269 | 268 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( ( 𝑌 · 1 ) + ( 𝑍 · 0 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) |
| 270 | 264 269 | eqtrid | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ‘ 1 ) = ( 𝐹 ‘ 𝑌 ) ) |
| 271 | oveq2 | ⊢ ( 𝑡 = 0 → ( 𝑌 · 𝑡 ) = ( 𝑌 · 0 ) ) | |
| 272 | oveq2 | ⊢ ( 𝑡 = 0 → ( 1 − 𝑡 ) = ( 1 − 0 ) ) | |
| 273 | 1m0e1 | ⊢ ( 1 − 0 ) = 1 | |
| 274 | 272 273 | eqtrdi | ⊢ ( 𝑡 = 0 → ( 1 − 𝑡 ) = 1 ) |
| 275 | 274 | oveq2d | ⊢ ( 𝑡 = 0 → ( 𝑍 · ( 1 − 𝑡 ) ) = ( 𝑍 · 1 ) ) |
| 276 | 271 275 | oveq12d | ⊢ ( 𝑡 = 0 → ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) = ( ( 𝑌 · 0 ) + ( 𝑍 · 1 ) ) ) |
| 277 | 276 | fveq2d | ⊢ ( 𝑡 = 0 → ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) = ( 𝐹 ‘ ( ( 𝑌 · 0 ) + ( 𝑍 · 1 ) ) ) ) |
| 278 | fvex | ⊢ ( 𝐹 ‘ ( ( 𝑌 · 0 ) + ( 𝑍 · 1 ) ) ) ∈ V | |
| 279 | 277 261 278 | fvmpt | ⊢ ( 0 ∈ ( 0 [,] 1 ) → ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ‘ 0 ) = ( 𝐹 ‘ ( ( 𝑌 · 0 ) + ( 𝑍 · 1 ) ) ) ) |
| 280 | 10 279 | ax-mp | ⊢ ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ‘ 0 ) = ( 𝐹 ‘ ( ( 𝑌 · 0 ) + ( 𝑍 · 1 ) ) ) |
| 281 | 19 | mul01d | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑌 · 0 ) = 0 ) |
| 282 | 28 | mulridd | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑍 · 1 ) = 𝑍 ) |
| 283 | 281 282 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑌 · 0 ) + ( 𝑍 · 1 ) ) = ( 0 + 𝑍 ) ) |
| 284 | 28 | addlidd | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 0 + 𝑍 ) = 𝑍 ) |
| 285 | 283 284 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑌 · 0 ) + ( 𝑍 · 1 ) ) = 𝑍 ) |
| 286 | 285 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( ( 𝑌 · 0 ) + ( 𝑍 · 1 ) ) ) = ( 𝐹 ‘ 𝑍 ) ) |
| 287 | 280 286 | eqtrid | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ‘ 0 ) = ( 𝐹 ‘ 𝑍 ) ) |
| 288 | 270 287 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ‘ 1 ) − ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ‘ 0 ) ) = ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑍 ) ) ) |
| 289 | 288 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( abs ‘ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ‘ 1 ) − ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( 𝑌 · 𝑡 ) + ( 𝑍 · ( 1 − 𝑡 ) ) ) ) ) ‘ 0 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑍 ) ) ) ) |
| 290 | 273 | fveq2i | ⊢ ( abs ‘ ( 1 − 0 ) ) = ( abs ‘ 1 ) |
| 291 | abs1 | ⊢ ( abs ‘ 1 ) = 1 | |
| 292 | 290 291 | eqtri | ⊢ ( abs ‘ ( 1 − 0 ) ) = 1 |
| 293 | 292 | oveq2i | ⊢ ( ( 𝑀 · ( abs ‘ ( 𝑌 − 𝑍 ) ) ) · ( abs ‘ ( 1 − 0 ) ) ) = ( ( 𝑀 · ( abs ‘ ( 𝑌 − 𝑍 ) ) ) · 1 ) |
| 294 | 205 | recnd | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑀 · ( abs ‘ ( 𝑌 − 𝑍 ) ) ) ∈ ℂ ) |
| 295 | 294 | mulridd | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑀 · ( abs ‘ ( 𝑌 − 𝑍 ) ) ) · 1 ) = ( 𝑀 · ( abs ‘ ( 𝑌 − 𝑍 ) ) ) ) |
| 296 | 293 295 | eqtrid | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑀 · ( abs ‘ ( 𝑌 − 𝑍 ) ) ) · ( abs ‘ ( 1 − 0 ) ) ) = ( 𝑀 · ( abs ‘ ( 𝑌 − 𝑍 ) ) ) ) |
| 297 | 253 289 296 | 3brtr3d | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑍 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑌 − 𝑍 ) ) ) ) |