This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An open ball in the complex numbers is a convex set. (Contributed by Mario Carneiro, 12-Feb-2015) (Revised by Mario Carneiro, 8-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | blcvx.s | |- S = ( P ( ball ` ( abs o. - ) ) R ) |
|
| Assertion | blcvx | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( T x. A ) + ( ( 1 - T ) x. B ) ) e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | blcvx.s | |- S = ( P ( ball ` ( abs o. - ) ) R ) |
|
| 2 | simpr3 | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> T e. ( 0 [,] 1 ) ) |
|
| 3 | elicc01 | |- ( T e. ( 0 [,] 1 ) <-> ( T e. RR /\ 0 <_ T /\ T <_ 1 ) ) |
|
| 4 | 2 3 | sylib | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( T e. RR /\ 0 <_ T /\ T <_ 1 ) ) |
| 5 | 4 | simp1d | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> T e. RR ) |
| 6 | 5 | recnd | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> T e. CC ) |
| 7 | simpr1 | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> A e. S ) |
|
| 8 | 7 1 | eleqtrdi | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> A e. ( P ( ball ` ( abs o. - ) ) R ) ) |
| 9 | cnxmet | |- ( abs o. - ) e. ( *Met ` CC ) |
|
| 10 | simpll | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> P e. CC ) |
|
| 11 | simplr | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> R e. RR* ) |
|
| 12 | elbl | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ P e. CC /\ R e. RR* ) -> ( A e. ( P ( ball ` ( abs o. - ) ) R ) <-> ( A e. CC /\ ( P ( abs o. - ) A ) < R ) ) ) |
|
| 13 | 9 10 11 12 | mp3an2i | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( A e. ( P ( ball ` ( abs o. - ) ) R ) <-> ( A e. CC /\ ( P ( abs o. - ) A ) < R ) ) ) |
| 14 | 8 13 | mpbid | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( A e. CC /\ ( P ( abs o. - ) A ) < R ) ) |
| 15 | 14 | simpld | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> A e. CC ) |
| 16 | 6 15 | mulcld | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( T x. A ) e. CC ) |
| 17 | 1re | |- 1 e. RR |
|
| 18 | resubcl | |- ( ( 1 e. RR /\ T e. RR ) -> ( 1 - T ) e. RR ) |
|
| 19 | 17 5 18 | sylancr | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( 1 - T ) e. RR ) |
| 20 | 19 | recnd | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( 1 - T ) e. CC ) |
| 21 | simpr2 | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> B e. S ) |
|
| 22 | 21 1 | eleqtrdi | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> B e. ( P ( ball ` ( abs o. - ) ) R ) ) |
| 23 | elbl | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ P e. CC /\ R e. RR* ) -> ( B e. ( P ( ball ` ( abs o. - ) ) R ) <-> ( B e. CC /\ ( P ( abs o. - ) B ) < R ) ) ) |
|
| 24 | 9 10 11 23 | mp3an2i | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( B e. ( P ( ball ` ( abs o. - ) ) R ) <-> ( B e. CC /\ ( P ( abs o. - ) B ) < R ) ) ) |
| 25 | 22 24 | mpbid | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( B e. CC /\ ( P ( abs o. - ) B ) < R ) ) |
| 26 | 25 | simpld | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> B e. CC ) |
| 27 | 20 26 | mulcld | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( 1 - T ) x. B ) e. CC ) |
| 28 | 16 27 | addcld | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( T x. A ) + ( ( 1 - T ) x. B ) ) e. CC ) |
| 29 | eqid | |- ( abs o. - ) = ( abs o. - ) |
|
| 30 | 29 | cnmetdval | |- ( ( P e. CC /\ ( ( T x. A ) + ( ( 1 - T ) x. B ) ) e. CC ) -> ( P ( abs o. - ) ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) = ( abs ` ( P - ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) ) ) |
| 31 | 10 28 30 | syl2anc | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( P ( abs o. - ) ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) = ( abs ` ( P - ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) ) ) |
| 32 | 6 10 15 | subdid | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( T x. ( P - A ) ) = ( ( T x. P ) - ( T x. A ) ) ) |
| 33 | 20 10 26 | subdid | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( 1 - T ) x. ( P - B ) ) = ( ( ( 1 - T ) x. P ) - ( ( 1 - T ) x. B ) ) ) |
| 34 | 32 33 | oveq12d | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( T x. ( P - A ) ) + ( ( 1 - T ) x. ( P - B ) ) ) = ( ( ( T x. P ) - ( T x. A ) ) + ( ( ( 1 - T ) x. P ) - ( ( 1 - T ) x. B ) ) ) ) |
| 35 | 6 10 | mulcld | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( T x. P ) e. CC ) |
| 36 | 20 10 | mulcld | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( 1 - T ) x. P ) e. CC ) |
| 37 | 35 36 16 27 | addsub4d | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( ( T x. P ) + ( ( 1 - T ) x. P ) ) - ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) = ( ( ( T x. P ) - ( T x. A ) ) + ( ( ( 1 - T ) x. P ) - ( ( 1 - T ) x. B ) ) ) ) |
| 38 | ax-1cn | |- 1 e. CC |
|
| 39 | pncan3 | |- ( ( T e. CC /\ 1 e. CC ) -> ( T + ( 1 - T ) ) = 1 ) |
|
| 40 | 6 38 39 | sylancl | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( T + ( 1 - T ) ) = 1 ) |
| 41 | 40 | oveq1d | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( T + ( 1 - T ) ) x. P ) = ( 1 x. P ) ) |
| 42 | 6 20 10 | adddird | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( T + ( 1 - T ) ) x. P ) = ( ( T x. P ) + ( ( 1 - T ) x. P ) ) ) |
| 43 | mullid | |- ( P e. CC -> ( 1 x. P ) = P ) |
|
| 44 | 43 | ad2antrr | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( 1 x. P ) = P ) |
| 45 | 41 42 44 | 3eqtr3d | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( T x. P ) + ( ( 1 - T ) x. P ) ) = P ) |
| 46 | 45 | oveq1d | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( ( T x. P ) + ( ( 1 - T ) x. P ) ) - ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) = ( P - ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) ) |
| 47 | 34 37 46 | 3eqtr2d | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( T x. ( P - A ) ) + ( ( 1 - T ) x. ( P - B ) ) ) = ( P - ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) ) |
| 48 | 47 | fveq2d | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( abs ` ( ( T x. ( P - A ) ) + ( ( 1 - T ) x. ( P - B ) ) ) ) = ( abs ` ( P - ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) ) ) |
| 49 | 31 48 | eqtr4d | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( P ( abs o. - ) ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) = ( abs ` ( ( T x. ( P - A ) ) + ( ( 1 - T ) x. ( P - B ) ) ) ) ) |
| 50 | 10 15 | subcld | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( P - A ) e. CC ) |
| 51 | 6 50 | mulcld | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( T x. ( P - A ) ) e. CC ) |
| 52 | 10 26 | subcld | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( P - B ) e. CC ) |
| 53 | 20 52 | mulcld | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( 1 - T ) x. ( P - B ) ) e. CC ) |
| 54 | 51 53 | addcld | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( T x. ( P - A ) ) + ( ( 1 - T ) x. ( P - B ) ) ) e. CC ) |
| 55 | 54 | abscld | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( abs ` ( ( T x. ( P - A ) ) + ( ( 1 - T ) x. ( P - B ) ) ) ) e. RR ) |
| 56 | 55 | adantr | |- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( abs ` ( ( T x. ( P - A ) ) + ( ( 1 - T ) x. ( P - B ) ) ) ) e. RR ) |
| 57 | 51 | abscld | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( abs ` ( T x. ( P - A ) ) ) e. RR ) |
| 58 | 53 | abscld | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) e. RR ) |
| 59 | 57 58 | readdcld | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( abs ` ( T x. ( P - A ) ) ) + ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) ) e. RR ) |
| 60 | 59 | adantr | |- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( ( abs ` ( T x. ( P - A ) ) ) + ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) ) e. RR ) |
| 61 | simpr | |- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> R e. RR ) |
|
| 62 | 51 53 | abstrid | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( abs ` ( ( T x. ( P - A ) ) + ( ( 1 - T ) x. ( P - B ) ) ) ) <_ ( ( abs ` ( T x. ( P - A ) ) ) + ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) ) ) |
| 63 | 62 | adantr | |- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( abs ` ( ( T x. ( P - A ) ) + ( ( 1 - T ) x. ( P - B ) ) ) ) <_ ( ( abs ` ( T x. ( P - A ) ) ) + ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) ) ) |
| 64 | oveq1 | |- ( T = 0 -> ( T x. ( P - A ) ) = ( 0 x. ( P - A ) ) ) |
|
| 65 | 50 | mul02d | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( 0 x. ( P - A ) ) = 0 ) |
| 66 | 64 65 | sylan9eqr | |- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ T = 0 ) -> ( T x. ( P - A ) ) = 0 ) |
| 67 | 66 | abs00bd | |- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ T = 0 ) -> ( abs ` ( T x. ( P - A ) ) ) = 0 ) |
| 68 | oveq2 | |- ( T = 0 -> ( 1 - T ) = ( 1 - 0 ) ) |
|
| 69 | 1m0e1 | |- ( 1 - 0 ) = 1 |
|
| 70 | 68 69 | eqtrdi | |- ( T = 0 -> ( 1 - T ) = 1 ) |
| 71 | 70 | oveq1d | |- ( T = 0 -> ( ( 1 - T ) x. ( P - B ) ) = ( 1 x. ( P - B ) ) ) |
| 72 | 52 | mullidd | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( 1 x. ( P - B ) ) = ( P - B ) ) |
| 73 | 71 72 | sylan9eqr | |- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ T = 0 ) -> ( ( 1 - T ) x. ( P - B ) ) = ( P - B ) ) |
| 74 | 73 | fveq2d | |- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ T = 0 ) -> ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) = ( abs ` ( P - B ) ) ) |
| 75 | 67 74 | oveq12d | |- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ T = 0 ) -> ( ( abs ` ( T x. ( P - A ) ) ) + ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) ) = ( 0 + ( abs ` ( P - B ) ) ) ) |
| 76 | 52 | abscld | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( abs ` ( P - B ) ) e. RR ) |
| 77 | 76 | recnd | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( abs ` ( P - B ) ) e. CC ) |
| 78 | 77 | addlidd | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( 0 + ( abs ` ( P - B ) ) ) = ( abs ` ( P - B ) ) ) |
| 79 | 29 | cnmetdval | |- ( ( P e. CC /\ B e. CC ) -> ( P ( abs o. - ) B ) = ( abs ` ( P - B ) ) ) |
| 80 | 10 26 79 | syl2anc | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( P ( abs o. - ) B ) = ( abs ` ( P - B ) ) ) |
| 81 | 78 80 | eqtr4d | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( 0 + ( abs ` ( P - B ) ) ) = ( P ( abs o. - ) B ) ) |
| 82 | 25 | simprd | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( P ( abs o. - ) B ) < R ) |
| 83 | 81 82 | eqbrtrd | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( 0 + ( abs ` ( P - B ) ) ) < R ) |
| 84 | 83 | adantr | |- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ T = 0 ) -> ( 0 + ( abs ` ( P - B ) ) ) < R ) |
| 85 | 75 84 | eqbrtrd | |- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ T = 0 ) -> ( ( abs ` ( T x. ( P - A ) ) ) + ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) ) < R ) |
| 86 | 85 | adantlr | |- ( ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) /\ T = 0 ) -> ( ( abs ` ( T x. ( P - A ) ) ) + ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) ) < R ) |
| 87 | 6 50 | absmuld | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( abs ` ( T x. ( P - A ) ) ) = ( ( abs ` T ) x. ( abs ` ( P - A ) ) ) ) |
| 88 | 4 | simp2d | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> 0 <_ T ) |
| 89 | 5 88 | absidd | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( abs ` T ) = T ) |
| 90 | 89 | oveq1d | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( abs ` T ) x. ( abs ` ( P - A ) ) ) = ( T x. ( abs ` ( P - A ) ) ) ) |
| 91 | 87 90 | eqtrd | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( abs ` ( T x. ( P - A ) ) ) = ( T x. ( abs ` ( P - A ) ) ) ) |
| 92 | 91 | ad2antrr | |- ( ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) /\ T =/= 0 ) -> ( abs ` ( T x. ( P - A ) ) ) = ( T x. ( abs ` ( P - A ) ) ) ) |
| 93 | 29 | cnmetdval | |- ( ( P e. CC /\ A e. CC ) -> ( P ( abs o. - ) A ) = ( abs ` ( P - A ) ) ) |
| 94 | 10 15 93 | syl2anc | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( P ( abs o. - ) A ) = ( abs ` ( P - A ) ) ) |
| 95 | 14 | simprd | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( P ( abs o. - ) A ) < R ) |
| 96 | 94 95 | eqbrtrrd | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( abs ` ( P - A ) ) < R ) |
| 97 | 96 | ad2antrr | |- ( ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) /\ T =/= 0 ) -> ( abs ` ( P - A ) ) < R ) |
| 98 | 50 | abscld | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( abs ` ( P - A ) ) e. RR ) |
| 99 | 98 | ad2antrr | |- ( ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) /\ T =/= 0 ) -> ( abs ` ( P - A ) ) e. RR ) |
| 100 | simplr | |- ( ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) /\ T =/= 0 ) -> R e. RR ) |
|
| 101 | 5 | ad2antrr | |- ( ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) /\ T =/= 0 ) -> T e. RR ) |
| 102 | 0red | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> 0 e. RR ) |
|
| 103 | 102 5 88 | leltned | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( 0 < T <-> T =/= 0 ) ) |
| 104 | 103 | biimpar | |- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ T =/= 0 ) -> 0 < T ) |
| 105 | 104 | adantlr | |- ( ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) /\ T =/= 0 ) -> 0 < T ) |
| 106 | ltmul2 | |- ( ( ( abs ` ( P - A ) ) e. RR /\ R e. RR /\ ( T e. RR /\ 0 < T ) ) -> ( ( abs ` ( P - A ) ) < R <-> ( T x. ( abs ` ( P - A ) ) ) < ( T x. R ) ) ) |
|
| 107 | 99 100 101 105 106 | syl112anc | |- ( ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) /\ T =/= 0 ) -> ( ( abs ` ( P - A ) ) < R <-> ( T x. ( abs ` ( P - A ) ) ) < ( T x. R ) ) ) |
| 108 | 97 107 | mpbid | |- ( ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) /\ T =/= 0 ) -> ( T x. ( abs ` ( P - A ) ) ) < ( T x. R ) ) |
| 109 | 92 108 | eqbrtrd | |- ( ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) /\ T =/= 0 ) -> ( abs ` ( T x. ( P - A ) ) ) < ( T x. R ) ) |
| 110 | 20 52 | absmuld | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) = ( ( abs ` ( 1 - T ) ) x. ( abs ` ( P - B ) ) ) ) |
| 111 | 17 | a1i | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> 1 e. RR ) |
| 112 | 4 | simp3d | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> T <_ 1 ) |
| 113 | 5 111 112 | abssubge0d | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( abs ` ( 1 - T ) ) = ( 1 - T ) ) |
| 114 | 113 | oveq1d | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( abs ` ( 1 - T ) ) x. ( abs ` ( P - B ) ) ) = ( ( 1 - T ) x. ( abs ` ( P - B ) ) ) ) |
| 115 | 110 114 | eqtrd | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) = ( ( 1 - T ) x. ( abs ` ( P - B ) ) ) ) |
| 116 | 115 | adantr | |- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) = ( ( 1 - T ) x. ( abs ` ( P - B ) ) ) ) |
| 117 | 76 | adantr | |- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( abs ` ( P - B ) ) e. RR ) |
| 118 | subge0 | |- ( ( 1 e. RR /\ T e. RR ) -> ( 0 <_ ( 1 - T ) <-> T <_ 1 ) ) |
|
| 119 | 17 5 118 | sylancr | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( 0 <_ ( 1 - T ) <-> T <_ 1 ) ) |
| 120 | 112 119 | mpbird | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> 0 <_ ( 1 - T ) ) |
| 121 | 19 120 | jca | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( 1 - T ) e. RR /\ 0 <_ ( 1 - T ) ) ) |
| 122 | 121 | adantr | |- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( ( 1 - T ) e. RR /\ 0 <_ ( 1 - T ) ) ) |
| 123 | 80 82 | eqbrtrrd | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( abs ` ( P - B ) ) < R ) |
| 124 | 123 | adantr | |- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( abs ` ( P - B ) ) < R ) |
| 125 | ltle | |- ( ( ( abs ` ( P - B ) ) e. RR /\ R e. RR ) -> ( ( abs ` ( P - B ) ) < R -> ( abs ` ( P - B ) ) <_ R ) ) |
|
| 126 | 76 125 | sylan | |- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( ( abs ` ( P - B ) ) < R -> ( abs ` ( P - B ) ) <_ R ) ) |
| 127 | 124 126 | mpd | |- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( abs ` ( P - B ) ) <_ R ) |
| 128 | lemul2a | |- ( ( ( ( abs ` ( P - B ) ) e. RR /\ R e. RR /\ ( ( 1 - T ) e. RR /\ 0 <_ ( 1 - T ) ) ) /\ ( abs ` ( P - B ) ) <_ R ) -> ( ( 1 - T ) x. ( abs ` ( P - B ) ) ) <_ ( ( 1 - T ) x. R ) ) |
|
| 129 | 117 61 122 127 128 | syl31anc | |- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( ( 1 - T ) x. ( abs ` ( P - B ) ) ) <_ ( ( 1 - T ) x. R ) ) |
| 130 | 116 129 | eqbrtrd | |- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) <_ ( ( 1 - T ) x. R ) ) |
| 131 | 130 | adantr | |- ( ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) /\ T =/= 0 ) -> ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) <_ ( ( 1 - T ) x. R ) ) |
| 132 | 57 | adantr | |- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( abs ` ( T x. ( P - A ) ) ) e. RR ) |
| 133 | 58 | adantr | |- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) e. RR ) |
| 134 | remulcl | |- ( ( T e. RR /\ R e. RR ) -> ( T x. R ) e. RR ) |
|
| 135 | 5 134 | sylan | |- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( T x. R ) e. RR ) |
| 136 | remulcl | |- ( ( ( 1 - T ) e. RR /\ R e. RR ) -> ( ( 1 - T ) x. R ) e. RR ) |
|
| 137 | 19 136 | sylan | |- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( ( 1 - T ) x. R ) e. RR ) |
| 138 | ltleadd | |- ( ( ( ( abs ` ( T x. ( P - A ) ) ) e. RR /\ ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) e. RR ) /\ ( ( T x. R ) e. RR /\ ( ( 1 - T ) x. R ) e. RR ) ) -> ( ( ( abs ` ( T x. ( P - A ) ) ) < ( T x. R ) /\ ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) <_ ( ( 1 - T ) x. R ) ) -> ( ( abs ` ( T x. ( P - A ) ) ) + ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) ) < ( ( T x. R ) + ( ( 1 - T ) x. R ) ) ) ) |
|
| 139 | 132 133 135 137 138 | syl22anc | |- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( ( ( abs ` ( T x. ( P - A ) ) ) < ( T x. R ) /\ ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) <_ ( ( 1 - T ) x. R ) ) -> ( ( abs ` ( T x. ( P - A ) ) ) + ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) ) < ( ( T x. R ) + ( ( 1 - T ) x. R ) ) ) ) |
| 140 | 139 | adantr | |- ( ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) /\ T =/= 0 ) -> ( ( ( abs ` ( T x. ( P - A ) ) ) < ( T x. R ) /\ ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) <_ ( ( 1 - T ) x. R ) ) -> ( ( abs ` ( T x. ( P - A ) ) ) + ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) ) < ( ( T x. R ) + ( ( 1 - T ) x. R ) ) ) ) |
| 141 | 109 131 140 | mp2and | |- ( ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) /\ T =/= 0 ) -> ( ( abs ` ( T x. ( P - A ) ) ) + ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) ) < ( ( T x. R ) + ( ( 1 - T ) x. R ) ) ) |
| 142 | 40 | oveq1d | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( T + ( 1 - T ) ) x. R ) = ( 1 x. R ) ) |
| 143 | 142 | adantr | |- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( ( T + ( 1 - T ) ) x. R ) = ( 1 x. R ) ) |
| 144 | 6 | adantr | |- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> T e. CC ) |
| 145 | 20 | adantr | |- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( 1 - T ) e. CC ) |
| 146 | 61 | recnd | |- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> R e. CC ) |
| 147 | 144 145 146 | adddird | |- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( ( T + ( 1 - T ) ) x. R ) = ( ( T x. R ) + ( ( 1 - T ) x. R ) ) ) |
| 148 | 146 | mullidd | |- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( 1 x. R ) = R ) |
| 149 | 143 147 148 | 3eqtr3d | |- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( ( T x. R ) + ( ( 1 - T ) x. R ) ) = R ) |
| 150 | 149 | adantr | |- ( ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) /\ T =/= 0 ) -> ( ( T x. R ) + ( ( 1 - T ) x. R ) ) = R ) |
| 151 | 141 150 | breqtrd | |- ( ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) /\ T =/= 0 ) -> ( ( abs ` ( T x. ( P - A ) ) ) + ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) ) < R ) |
| 152 | 86 151 | pm2.61dane | |- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( ( abs ` ( T x. ( P - A ) ) ) + ( abs ` ( ( 1 - T ) x. ( P - B ) ) ) ) < R ) |
| 153 | 56 60 61 63 152 | lelttrd | |- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R e. RR ) -> ( abs ` ( ( T x. ( P - A ) ) + ( ( 1 - T ) x. ( P - B ) ) ) ) < R ) |
| 154 | 55 | adantr | |- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R = +oo ) -> ( abs ` ( ( T x. ( P - A ) ) + ( ( 1 - T ) x. ( P - B ) ) ) ) e. RR ) |
| 155 | 154 | ltpnfd | |- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R = +oo ) -> ( abs ` ( ( T x. ( P - A ) ) + ( ( 1 - T ) x. ( P - B ) ) ) ) < +oo ) |
| 156 | simpr | |- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R = +oo ) -> R = +oo ) |
|
| 157 | 155 156 | breqtrrd | |- ( ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) /\ R = +oo ) -> ( abs ` ( ( T x. ( P - A ) ) + ( ( 1 - T ) x. ( P - B ) ) ) ) < R ) |
| 158 | 0xr | |- 0 e. RR* |
|
| 159 | 158 | a1i | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> 0 e. RR* ) |
| 160 | 98 | rexrd | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( abs ` ( P - A ) ) e. RR* ) |
| 161 | 50 | absge0d | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> 0 <_ ( abs ` ( P - A ) ) ) |
| 162 | 159 160 11 161 96 | xrlelttrd | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> 0 < R ) |
| 163 | 159 11 162 | xrltled | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> 0 <_ R ) |
| 164 | ge0nemnf | |- ( ( R e. RR* /\ 0 <_ R ) -> R =/= -oo ) |
|
| 165 | 11 163 164 | syl2anc | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> R =/= -oo ) |
| 166 | 11 165 | jca | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( R e. RR* /\ R =/= -oo ) ) |
| 167 | xrnemnf | |- ( ( R e. RR* /\ R =/= -oo ) <-> ( R e. RR \/ R = +oo ) ) |
|
| 168 | 166 167 | sylib | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( R e. RR \/ R = +oo ) ) |
| 169 | 153 157 168 | mpjaodan | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( abs ` ( ( T x. ( P - A ) ) + ( ( 1 - T ) x. ( P - B ) ) ) ) < R ) |
| 170 | 49 169 | eqbrtrd | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( P ( abs o. - ) ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) < R ) |
| 171 | elbl | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ P e. CC /\ R e. RR* ) -> ( ( ( T x. A ) + ( ( 1 - T ) x. B ) ) e. ( P ( ball ` ( abs o. - ) ) R ) <-> ( ( ( T x. A ) + ( ( 1 - T ) x. B ) ) e. CC /\ ( P ( abs o. - ) ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) < R ) ) ) |
|
| 172 | 9 10 11 171 | mp3an2i | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( ( T x. A ) + ( ( 1 - T ) x. B ) ) e. ( P ( ball ` ( abs o. - ) ) R ) <-> ( ( ( T x. A ) + ( ( 1 - T ) x. B ) ) e. CC /\ ( P ( abs o. - ) ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) < R ) ) ) |
| 173 | 28 170 172 | mpbir2and | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( T x. A ) + ( ( 1 - T ) x. B ) ) e. ( P ( ball ` ( abs o. - ) ) R ) ) |
| 174 | 173 1 | eleqtrrdi | |- ( ( ( P e. CC /\ R e. RR* ) /\ ( A e. S /\ B e. S /\ T e. ( 0 [,] 1 ) ) ) -> ( ( T x. A ) + ( ( 1 - T ) x. B ) ) e. S ) |