This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of two continuous maps on complex numbers is also continuous. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 25-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cncfco.4 | |- ( ph -> F e. ( A -cn-> B ) ) |
|
| cncfco.5 | |- ( ph -> G e. ( B -cn-> C ) ) |
||
| Assertion | cncfco | |- ( ph -> ( G o. F ) e. ( A -cn-> C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfco.4 | |- ( ph -> F e. ( A -cn-> B ) ) |
|
| 2 | cncfco.5 | |- ( ph -> G e. ( B -cn-> C ) ) |
|
| 3 | cncff | |- ( G e. ( B -cn-> C ) -> G : B --> C ) |
|
| 4 | 2 3 | syl | |- ( ph -> G : B --> C ) |
| 5 | cncff | |- ( F e. ( A -cn-> B ) -> F : A --> B ) |
|
| 6 | 1 5 | syl | |- ( ph -> F : A --> B ) |
| 7 | fco | |- ( ( G : B --> C /\ F : A --> B ) -> ( G o. F ) : A --> C ) |
|
| 8 | 4 6 7 | syl2anc | |- ( ph -> ( G o. F ) : A --> C ) |
| 9 | 2 | adantr | |- ( ( ph /\ ( x e. A /\ y e. RR+ ) ) -> G e. ( B -cn-> C ) ) |
| 10 | 6 | adantr | |- ( ( ph /\ ( x e. A /\ y e. RR+ ) ) -> F : A --> B ) |
| 11 | simprl | |- ( ( ph /\ ( x e. A /\ y e. RR+ ) ) -> x e. A ) |
|
| 12 | 10 11 | ffvelcdmd | |- ( ( ph /\ ( x e. A /\ y e. RR+ ) ) -> ( F ` x ) e. B ) |
| 13 | simprr | |- ( ( ph /\ ( x e. A /\ y e. RR+ ) ) -> y e. RR+ ) |
|
| 14 | cncfi | |- ( ( G e. ( B -cn-> C ) /\ ( F ` x ) e. B /\ y e. RR+ ) -> E. u e. RR+ A. v e. B ( ( abs ` ( v - ( F ` x ) ) ) < u -> ( abs ` ( ( G ` v ) - ( G ` ( F ` x ) ) ) ) < y ) ) |
|
| 15 | 9 12 13 14 | syl3anc | |- ( ( ph /\ ( x e. A /\ y e. RR+ ) ) -> E. u e. RR+ A. v e. B ( ( abs ` ( v - ( F ` x ) ) ) < u -> ( abs ` ( ( G ` v ) - ( G ` ( F ` x ) ) ) ) < y ) ) |
| 16 | 1 | ad2antrr | |- ( ( ( ph /\ ( x e. A /\ y e. RR+ ) ) /\ u e. RR+ ) -> F e. ( A -cn-> B ) ) |
| 17 | simplrl | |- ( ( ( ph /\ ( x e. A /\ y e. RR+ ) ) /\ u e. RR+ ) -> x e. A ) |
|
| 18 | simpr | |- ( ( ( ph /\ ( x e. A /\ y e. RR+ ) ) /\ u e. RR+ ) -> u e. RR+ ) |
|
| 19 | cncfi | |- ( ( F e. ( A -cn-> B ) /\ x e. A /\ u e. RR+ ) -> E. z e. RR+ A. w e. A ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( F ` w ) - ( F ` x ) ) ) < u ) ) |
|
| 20 | 16 17 18 19 | syl3anc | |- ( ( ( ph /\ ( x e. A /\ y e. RR+ ) ) /\ u e. RR+ ) -> E. z e. RR+ A. w e. A ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( F ` w ) - ( F ` x ) ) ) < u ) ) |
| 21 | 6 | ad3antrrr | |- ( ( ( ( ph /\ ( x e. A /\ y e. RR+ ) ) /\ u e. RR+ ) /\ ( z e. RR+ /\ w e. A ) ) -> F : A --> B ) |
| 22 | simprr | |- ( ( ( ( ph /\ ( x e. A /\ y e. RR+ ) ) /\ u e. RR+ ) /\ ( z e. RR+ /\ w e. A ) ) -> w e. A ) |
|
| 23 | 21 22 | ffvelcdmd | |- ( ( ( ( ph /\ ( x e. A /\ y e. RR+ ) ) /\ u e. RR+ ) /\ ( z e. RR+ /\ w e. A ) ) -> ( F ` w ) e. B ) |
| 24 | fvoveq1 | |- ( v = ( F ` w ) -> ( abs ` ( v - ( F ` x ) ) ) = ( abs ` ( ( F ` w ) - ( F ` x ) ) ) ) |
|
| 25 | 24 | breq1d | |- ( v = ( F ` w ) -> ( ( abs ` ( v - ( F ` x ) ) ) < u <-> ( abs ` ( ( F ` w ) - ( F ` x ) ) ) < u ) ) |
| 26 | 25 | imbrov2fvoveq | |- ( v = ( F ` w ) -> ( ( ( abs ` ( v - ( F ` x ) ) ) < u -> ( abs ` ( ( G ` v ) - ( G ` ( F ` x ) ) ) ) < y ) <-> ( ( abs ` ( ( F ` w ) - ( F ` x ) ) ) < u -> ( abs ` ( ( G ` ( F ` w ) ) - ( G ` ( F ` x ) ) ) ) < y ) ) ) |
| 27 | 26 | rspcv | |- ( ( F ` w ) e. B -> ( A. v e. B ( ( abs ` ( v - ( F ` x ) ) ) < u -> ( abs ` ( ( G ` v ) - ( G ` ( F ` x ) ) ) ) < y ) -> ( ( abs ` ( ( F ` w ) - ( F ` x ) ) ) < u -> ( abs ` ( ( G ` ( F ` w ) ) - ( G ` ( F ` x ) ) ) ) < y ) ) ) |
| 28 | 23 27 | syl | |- ( ( ( ( ph /\ ( x e. A /\ y e. RR+ ) ) /\ u e. RR+ ) /\ ( z e. RR+ /\ w e. A ) ) -> ( A. v e. B ( ( abs ` ( v - ( F ` x ) ) ) < u -> ( abs ` ( ( G ` v ) - ( G ` ( F ` x ) ) ) ) < y ) -> ( ( abs ` ( ( F ` w ) - ( F ` x ) ) ) < u -> ( abs ` ( ( G ` ( F ` w ) ) - ( G ` ( F ` x ) ) ) ) < y ) ) ) |
| 29 | fvco3 | |- ( ( F : A --> B /\ w e. A ) -> ( ( G o. F ) ` w ) = ( G ` ( F ` w ) ) ) |
|
| 30 | 21 22 29 | syl2anc | |- ( ( ( ( ph /\ ( x e. A /\ y e. RR+ ) ) /\ u e. RR+ ) /\ ( z e. RR+ /\ w e. A ) ) -> ( ( G o. F ) ` w ) = ( G ` ( F ` w ) ) ) |
| 31 | 17 | adantr | |- ( ( ( ( ph /\ ( x e. A /\ y e. RR+ ) ) /\ u e. RR+ ) /\ ( z e. RR+ /\ w e. A ) ) -> x e. A ) |
| 32 | fvco3 | |- ( ( F : A --> B /\ x e. A ) -> ( ( G o. F ) ` x ) = ( G ` ( F ` x ) ) ) |
|
| 33 | 21 31 32 | syl2anc | |- ( ( ( ( ph /\ ( x e. A /\ y e. RR+ ) ) /\ u e. RR+ ) /\ ( z e. RR+ /\ w e. A ) ) -> ( ( G o. F ) ` x ) = ( G ` ( F ` x ) ) ) |
| 34 | 30 33 | oveq12d | |- ( ( ( ( ph /\ ( x e. A /\ y e. RR+ ) ) /\ u e. RR+ ) /\ ( z e. RR+ /\ w e. A ) ) -> ( ( ( G o. F ) ` w ) - ( ( G o. F ) ` x ) ) = ( ( G ` ( F ` w ) ) - ( G ` ( F ` x ) ) ) ) |
| 35 | 34 | fveq2d | |- ( ( ( ( ph /\ ( x e. A /\ y e. RR+ ) ) /\ u e. RR+ ) /\ ( z e. RR+ /\ w e. A ) ) -> ( abs ` ( ( ( G o. F ) ` w ) - ( ( G o. F ) ` x ) ) ) = ( abs ` ( ( G ` ( F ` w ) ) - ( G ` ( F ` x ) ) ) ) ) |
| 36 | 35 | breq1d | |- ( ( ( ( ph /\ ( x e. A /\ y e. RR+ ) ) /\ u e. RR+ ) /\ ( z e. RR+ /\ w e. A ) ) -> ( ( abs ` ( ( ( G o. F ) ` w ) - ( ( G o. F ) ` x ) ) ) < y <-> ( abs ` ( ( G ` ( F ` w ) ) - ( G ` ( F ` x ) ) ) ) < y ) ) |
| 37 | 36 | imbi2d | |- ( ( ( ( ph /\ ( x e. A /\ y e. RR+ ) ) /\ u e. RR+ ) /\ ( z e. RR+ /\ w e. A ) ) -> ( ( ( abs ` ( ( F ` w ) - ( F ` x ) ) ) < u -> ( abs ` ( ( ( G o. F ) ` w ) - ( ( G o. F ) ` x ) ) ) < y ) <-> ( ( abs ` ( ( F ` w ) - ( F ` x ) ) ) < u -> ( abs ` ( ( G ` ( F ` w ) ) - ( G ` ( F ` x ) ) ) ) < y ) ) ) |
| 38 | 28 37 | sylibrd | |- ( ( ( ( ph /\ ( x e. A /\ y e. RR+ ) ) /\ u e. RR+ ) /\ ( z e. RR+ /\ w e. A ) ) -> ( A. v e. B ( ( abs ` ( v - ( F ` x ) ) ) < u -> ( abs ` ( ( G ` v ) - ( G ` ( F ` x ) ) ) ) < y ) -> ( ( abs ` ( ( F ` w ) - ( F ` x ) ) ) < u -> ( abs ` ( ( ( G o. F ) ` w ) - ( ( G o. F ) ` x ) ) ) < y ) ) ) |
| 39 | 38 | imp | |- ( ( ( ( ( ph /\ ( x e. A /\ y e. RR+ ) ) /\ u e. RR+ ) /\ ( z e. RR+ /\ w e. A ) ) /\ A. v e. B ( ( abs ` ( v - ( F ` x ) ) ) < u -> ( abs ` ( ( G ` v ) - ( G ` ( F ` x ) ) ) ) < y ) ) -> ( ( abs ` ( ( F ` w ) - ( F ` x ) ) ) < u -> ( abs ` ( ( ( G o. F ) ` w ) - ( ( G o. F ) ` x ) ) ) < y ) ) |
| 40 | 39 | an32s | |- ( ( ( ( ( ph /\ ( x e. A /\ y e. RR+ ) ) /\ u e. RR+ ) /\ A. v e. B ( ( abs ` ( v - ( F ` x ) ) ) < u -> ( abs ` ( ( G ` v ) - ( G ` ( F ` x ) ) ) ) < y ) ) /\ ( z e. RR+ /\ w e. A ) ) -> ( ( abs ` ( ( F ` w ) - ( F ` x ) ) ) < u -> ( abs ` ( ( ( G o. F ) ` w ) - ( ( G o. F ) ` x ) ) ) < y ) ) |
| 41 | 40 | imim2d | |- ( ( ( ( ( ph /\ ( x e. A /\ y e. RR+ ) ) /\ u e. RR+ ) /\ A. v e. B ( ( abs ` ( v - ( F ` x ) ) ) < u -> ( abs ` ( ( G ` v ) - ( G ` ( F ` x ) ) ) ) < y ) ) /\ ( z e. RR+ /\ w e. A ) ) -> ( ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( F ` w ) - ( F ` x ) ) ) < u ) -> ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( ( G o. F ) ` w ) - ( ( G o. F ) ` x ) ) ) < y ) ) ) |
| 42 | 41 | anassrs | |- ( ( ( ( ( ( ph /\ ( x e. A /\ y e. RR+ ) ) /\ u e. RR+ ) /\ A. v e. B ( ( abs ` ( v - ( F ` x ) ) ) < u -> ( abs ` ( ( G ` v ) - ( G ` ( F ` x ) ) ) ) < y ) ) /\ z e. RR+ ) /\ w e. A ) -> ( ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( F ` w ) - ( F ` x ) ) ) < u ) -> ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( ( G o. F ) ` w ) - ( ( G o. F ) ` x ) ) ) < y ) ) ) |
| 43 | 42 | ralimdva | |- ( ( ( ( ( ph /\ ( x e. A /\ y e. RR+ ) ) /\ u e. RR+ ) /\ A. v e. B ( ( abs ` ( v - ( F ` x ) ) ) < u -> ( abs ` ( ( G ` v ) - ( G ` ( F ` x ) ) ) ) < y ) ) /\ z e. RR+ ) -> ( A. w e. A ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( F ` w ) - ( F ` x ) ) ) < u ) -> A. w e. A ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( ( G o. F ) ` w ) - ( ( G o. F ) ` x ) ) ) < y ) ) ) |
| 44 | 43 | reximdva | |- ( ( ( ( ph /\ ( x e. A /\ y e. RR+ ) ) /\ u e. RR+ ) /\ A. v e. B ( ( abs ` ( v - ( F ` x ) ) ) < u -> ( abs ` ( ( G ` v ) - ( G ` ( F ` x ) ) ) ) < y ) ) -> ( E. z e. RR+ A. w e. A ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( F ` w ) - ( F ` x ) ) ) < u ) -> E. z e. RR+ A. w e. A ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( ( G o. F ) ` w ) - ( ( G o. F ) ` x ) ) ) < y ) ) ) |
| 45 | 44 | ex | |- ( ( ( ph /\ ( x e. A /\ y e. RR+ ) ) /\ u e. RR+ ) -> ( A. v e. B ( ( abs ` ( v - ( F ` x ) ) ) < u -> ( abs ` ( ( G ` v ) - ( G ` ( F ` x ) ) ) ) < y ) -> ( E. z e. RR+ A. w e. A ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( F ` w ) - ( F ` x ) ) ) < u ) -> E. z e. RR+ A. w e. A ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( ( G o. F ) ` w ) - ( ( G o. F ) ` x ) ) ) < y ) ) ) ) |
| 46 | 20 45 | mpid | |- ( ( ( ph /\ ( x e. A /\ y e. RR+ ) ) /\ u e. RR+ ) -> ( A. v e. B ( ( abs ` ( v - ( F ` x ) ) ) < u -> ( abs ` ( ( G ` v ) - ( G ` ( F ` x ) ) ) ) < y ) -> E. z e. RR+ A. w e. A ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( ( G o. F ) ` w ) - ( ( G o. F ) ` x ) ) ) < y ) ) ) |
| 47 | 46 | rexlimdva | |- ( ( ph /\ ( x e. A /\ y e. RR+ ) ) -> ( E. u e. RR+ A. v e. B ( ( abs ` ( v - ( F ` x ) ) ) < u -> ( abs ` ( ( G ` v ) - ( G ` ( F ` x ) ) ) ) < y ) -> E. z e. RR+ A. w e. A ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( ( G o. F ) ` w ) - ( ( G o. F ) ` x ) ) ) < y ) ) ) |
| 48 | 15 47 | mpd | |- ( ( ph /\ ( x e. A /\ y e. RR+ ) ) -> E. z e. RR+ A. w e. A ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( ( G o. F ) ` w ) - ( ( G o. F ) ` x ) ) ) < y ) ) |
| 49 | 48 | ralrimivva | |- ( ph -> A. x e. A A. y e. RR+ E. z e. RR+ A. w e. A ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( ( G o. F ) ` w ) - ( ( G o. F ) ` x ) ) ) < y ) ) |
| 50 | cncfrss | |- ( F e. ( A -cn-> B ) -> A C_ CC ) |
|
| 51 | 1 50 | syl | |- ( ph -> A C_ CC ) |
| 52 | cncfrss2 | |- ( G e. ( B -cn-> C ) -> C C_ CC ) |
|
| 53 | 2 52 | syl | |- ( ph -> C C_ CC ) |
| 54 | elcncf2 | |- ( ( A C_ CC /\ C C_ CC ) -> ( ( G o. F ) e. ( A -cn-> C ) <-> ( ( G o. F ) : A --> C /\ A. x e. A A. y e. RR+ E. z e. RR+ A. w e. A ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( ( G o. F ) ` w ) - ( ( G o. F ) ` x ) ) ) < y ) ) ) ) |
|
| 55 | 51 53 54 | syl2anc | |- ( ph -> ( ( G o. F ) e. ( A -cn-> C ) <-> ( ( G o. F ) : A --> C /\ A. x e. A A. y e. RR+ E. z e. RR+ A. w e. A ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( ( G o. F ) ` w ) - ( ( G o. F ) ` x ) ) ) < y ) ) ) ) |
| 56 | 8 49 55 | mpbir2and | |- ( ph -> ( G o. F ) e. ( A -cn-> C ) ) |