This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The interior of a closed interval in the standard topology on RR is the corresponding open interval. (Contributed by Mario Carneiro, 1-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iccntr | |- ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr | |- ( A e. RR -> A e. RR* ) |
|
| 2 | rexr | |- ( B e. RR -> B e. RR* ) |
|
| 3 | icc0 | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A [,] B ) = (/) <-> B < A ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( ( A [,] B ) = (/) <-> B < A ) ) |
| 5 | 4 | biimpar | |- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> ( A [,] B ) = (/) ) |
| 6 | 5 | fveq2d | |- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( ( int ` ( topGen ` ran (,) ) ) ` (/) ) ) |
| 7 | retop | |- ( topGen ` ran (,) ) e. Top |
|
| 8 | ntr0 | |- ( ( topGen ` ran (,) ) e. Top -> ( ( int ` ( topGen ` ran (,) ) ) ` (/) ) = (/) ) |
|
| 9 | 7 8 | ax-mp | |- ( ( int ` ( topGen ` ran (,) ) ) ` (/) ) = (/) |
| 10 | 0ss | |- (/) C_ ( { A , B } u. ( A (,) B ) ) |
|
| 11 | 9 10 | eqsstri | |- ( ( int ` ( topGen ` ran (,) ) ) ` (/) ) C_ ( { A , B } u. ( A (,) B ) ) |
| 12 | 6 11 | eqsstrdi | |- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) C_ ( { A , B } u. ( A (,) B ) ) ) |
| 13 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 14 | uniretop | |- RR = U. ( topGen ` ran (,) ) |
|
| 15 | 14 | ntrss2 | |- ( ( ( topGen ` ran (,) ) e. Top /\ ( A [,] B ) C_ RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) C_ ( A [,] B ) ) |
| 16 | 7 13 15 | sylancr | |- ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) C_ ( A [,] B ) ) |
| 17 | 16 | adantr | |- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) C_ ( A [,] B ) ) |
| 18 | 1 2 | anim12i | |- ( ( A e. RR /\ B e. RR ) -> ( A e. RR* /\ B e. RR* ) ) |
| 19 | uncom | |- ( { A , B } u. ( A (,) B ) ) = ( ( A (,) B ) u. { A , B } ) |
|
| 20 | prunioo | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( ( A (,) B ) u. { A , B } ) = ( A [,] B ) ) |
|
| 21 | 19 20 | eqtrid | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( { A , B } u. ( A (,) B ) ) = ( A [,] B ) ) |
| 22 | 21 | 3expa | |- ( ( ( A e. RR* /\ B e. RR* ) /\ A <_ B ) -> ( { A , B } u. ( A (,) B ) ) = ( A [,] B ) ) |
| 23 | 18 22 | sylan | |- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( { A , B } u. ( A (,) B ) ) = ( A [,] B ) ) |
| 24 | 17 23 | sseqtrrd | |- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) C_ ( { A , B } u. ( A (,) B ) ) ) |
| 25 | simpr | |- ( ( A e. RR /\ B e. RR ) -> B e. RR ) |
|
| 26 | simpl | |- ( ( A e. RR /\ B e. RR ) -> A e. RR ) |
|
| 27 | 12 24 25 26 | ltlecasei | |- ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) C_ ( { A , B } u. ( A (,) B ) ) ) |
| 28 | 14 | ntropn | |- ( ( ( topGen ` ran (,) ) e. Top /\ ( A [,] B ) C_ RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) e. ( topGen ` ran (,) ) ) |
| 29 | 7 13 28 | sylancr | |- ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) e. ( topGen ` ran (,) ) ) |
| 30 | eqid | |- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
|
| 31 | 30 | rexmet | |- ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) |
| 32 | eqid | |- ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
|
| 33 | 30 32 | tgioo | |- ( topGen ` ran (,) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
| 34 | 33 | mopni2 | |- ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) e. ( topGen ` ran (,) ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) -> E. x e. RR+ ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) |
| 35 | 31 34 | mp3an1 | |- ( ( ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) e. ( topGen ` ran (,) ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) -> E. x e. RR+ ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) |
| 36 | 29 35 | sylan | |- ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) -> E. x e. RR+ ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) |
| 37 | 26 | ad2antrr | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> A e. RR ) |
| 38 | rphalfcl | |- ( x e. RR+ -> ( x / 2 ) e. RR+ ) |
|
| 39 | 38 | adantl | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( x / 2 ) e. RR+ ) |
| 40 | 37 39 | ltsubrpd | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( A - ( x / 2 ) ) < A ) |
| 41 | 39 | rpred | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( x / 2 ) e. RR ) |
| 42 | 37 41 | resubcld | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( A - ( x / 2 ) ) e. RR ) |
| 43 | 42 37 | ltnled | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( ( A - ( x / 2 ) ) < A <-> -. A <_ ( A - ( x / 2 ) ) ) ) |
| 44 | 40 43 | mpbid | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> -. A <_ ( A - ( x / 2 ) ) ) |
| 45 | rpre | |- ( x e. RR+ -> x e. RR ) |
|
| 46 | 45 | adantl | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> x e. RR ) |
| 47 | rphalflt | |- ( x e. RR+ -> ( x / 2 ) < x ) |
|
| 48 | 47 | adantl | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( x / 2 ) < x ) |
| 49 | 41 46 37 48 | ltsub2dd | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( A - x ) < ( A - ( x / 2 ) ) ) |
| 50 | 37 46 | readdcld | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( A + x ) e. RR ) |
| 51 | ltaddrp | |- ( ( A e. RR /\ x e. RR+ ) -> A < ( A + x ) ) |
|
| 52 | 37 51 | sylancom | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> A < ( A + x ) ) |
| 53 | 42 37 50 40 52 | lttrd | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( A - ( x / 2 ) ) < ( A + x ) ) |
| 54 | 37 46 | resubcld | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( A - x ) e. RR ) |
| 55 | 54 | rexrd | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( A - x ) e. RR* ) |
| 56 | 50 | rexrd | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( A + x ) e. RR* ) |
| 57 | elioo2 | |- ( ( ( A - x ) e. RR* /\ ( A + x ) e. RR* ) -> ( ( A - ( x / 2 ) ) e. ( ( A - x ) (,) ( A + x ) ) <-> ( ( A - ( x / 2 ) ) e. RR /\ ( A - x ) < ( A - ( x / 2 ) ) /\ ( A - ( x / 2 ) ) < ( A + x ) ) ) ) |
|
| 58 | 55 56 57 | syl2anc | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( ( A - ( x / 2 ) ) e. ( ( A - x ) (,) ( A + x ) ) <-> ( ( A - ( x / 2 ) ) e. RR /\ ( A - x ) < ( A - ( x / 2 ) ) /\ ( A - ( x / 2 ) ) < ( A + x ) ) ) ) |
| 59 | 42 49 53 58 | mpbir3and | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( A - ( x / 2 ) ) e. ( ( A - x ) (,) ( A + x ) ) ) |
| 60 | 30 | bl2ioo | |- ( ( A e. RR /\ x e. RR ) -> ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) = ( ( A - x ) (,) ( A + x ) ) ) |
| 61 | 37 46 60 | syl2anc | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) = ( ( A - x ) (,) ( A + x ) ) ) |
| 62 | 59 61 | eleqtrrd | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( A - ( x / 2 ) ) e. ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) ) |
| 63 | ssel | |- ( ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) -> ( ( A - ( x / 2 ) ) e. ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) -> ( A - ( x / 2 ) ) e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) ) |
|
| 64 | 62 63 | syl5com | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) -> ( A - ( x / 2 ) ) e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) ) |
| 65 | 16 | ad2antrr | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) C_ ( A [,] B ) ) |
| 66 | 65 | sseld | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( ( A - ( x / 2 ) ) e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) -> ( A - ( x / 2 ) ) e. ( A [,] B ) ) ) |
| 67 | elicc2 | |- ( ( A e. RR /\ B e. RR ) -> ( ( A - ( x / 2 ) ) e. ( A [,] B ) <-> ( ( A - ( x / 2 ) ) e. RR /\ A <_ ( A - ( x / 2 ) ) /\ ( A - ( x / 2 ) ) <_ B ) ) ) |
|
| 68 | simp2 | |- ( ( ( A - ( x / 2 ) ) e. RR /\ A <_ ( A - ( x / 2 ) ) /\ ( A - ( x / 2 ) ) <_ B ) -> A <_ ( A - ( x / 2 ) ) ) |
|
| 69 | 67 68 | biimtrdi | |- ( ( A e. RR /\ B e. RR ) -> ( ( A - ( x / 2 ) ) e. ( A [,] B ) -> A <_ ( A - ( x / 2 ) ) ) ) |
| 70 | 69 | ad2antrr | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( ( A - ( x / 2 ) ) e. ( A [,] B ) -> A <_ ( A - ( x / 2 ) ) ) ) |
| 71 | 64 66 70 | 3syld | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) -> A <_ ( A - ( x / 2 ) ) ) ) |
| 72 | 44 71 | mtod | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> -. ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) |
| 73 | 72 | nrexdv | |- ( ( ( A e. RR /\ B e. RR ) /\ A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) -> -. E. x e. RR+ ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) |
| 74 | 36 73 | pm2.65da | |- ( ( A e. RR /\ B e. RR ) -> -. A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) |
| 75 | 33 | mopni2 | |- ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) e. ( topGen ` ran (,) ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) -> E. x e. RR+ ( B ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) |
| 76 | 31 75 | mp3an1 | |- ( ( ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) e. ( topGen ` ran (,) ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) -> E. x e. RR+ ( B ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) |
| 77 | 29 76 | sylan | |- ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) -> E. x e. RR+ ( B ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) |
| 78 | 25 | ad2antrr | |- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> B e. RR ) |
| 79 | 38 | adantl | |- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( x / 2 ) e. RR+ ) |
| 80 | 78 79 | ltaddrpd | |- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> B < ( B + ( x / 2 ) ) ) |
| 81 | 79 | rpred | |- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( x / 2 ) e. RR ) |
| 82 | 78 81 | readdcld | |- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( B + ( x / 2 ) ) e. RR ) |
| 83 | 78 82 | ltnled | |- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( B < ( B + ( x / 2 ) ) <-> -. ( B + ( x / 2 ) ) <_ B ) ) |
| 84 | 80 83 | mpbid | |- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> -. ( B + ( x / 2 ) ) <_ B ) |
| 85 | 45 | adantl | |- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> x e. RR ) |
| 86 | 78 85 | resubcld | |- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( B - x ) e. RR ) |
| 87 | ltsubrp | |- ( ( B e. RR /\ x e. RR+ ) -> ( B - x ) < B ) |
|
| 88 | 78 87 | sylancom | |- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( B - x ) < B ) |
| 89 | 86 78 82 88 80 | lttrd | |- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( B - x ) < ( B + ( x / 2 ) ) ) |
| 90 | 47 | adantl | |- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( x / 2 ) < x ) |
| 91 | 81 85 78 90 | ltadd2dd | |- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( B + ( x / 2 ) ) < ( B + x ) ) |
| 92 | 86 | rexrd | |- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( B - x ) e. RR* ) |
| 93 | 78 85 | readdcld | |- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( B + x ) e. RR ) |
| 94 | 93 | rexrd | |- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( B + x ) e. RR* ) |
| 95 | elioo2 | |- ( ( ( B - x ) e. RR* /\ ( B + x ) e. RR* ) -> ( ( B + ( x / 2 ) ) e. ( ( B - x ) (,) ( B + x ) ) <-> ( ( B + ( x / 2 ) ) e. RR /\ ( B - x ) < ( B + ( x / 2 ) ) /\ ( B + ( x / 2 ) ) < ( B + x ) ) ) ) |
|
| 96 | 92 94 95 | syl2anc | |- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( ( B + ( x / 2 ) ) e. ( ( B - x ) (,) ( B + x ) ) <-> ( ( B + ( x / 2 ) ) e. RR /\ ( B - x ) < ( B + ( x / 2 ) ) /\ ( B + ( x / 2 ) ) < ( B + x ) ) ) ) |
| 97 | 82 89 91 96 | mpbir3and | |- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( B + ( x / 2 ) ) e. ( ( B - x ) (,) ( B + x ) ) ) |
| 98 | 30 | bl2ioo | |- ( ( B e. RR /\ x e. RR ) -> ( B ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) = ( ( B - x ) (,) ( B + x ) ) ) |
| 99 | 78 85 98 | syl2anc | |- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( B ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) = ( ( B - x ) (,) ( B + x ) ) ) |
| 100 | 97 99 | eleqtrrd | |- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( B + ( x / 2 ) ) e. ( B ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) ) |
| 101 | ssel | |- ( ( B ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) -> ( ( B + ( x / 2 ) ) e. ( B ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) -> ( B + ( x / 2 ) ) e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) ) |
|
| 102 | 100 101 | syl5com | |- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( ( B ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) -> ( B + ( x / 2 ) ) e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) ) |
| 103 | 16 | ad2antrr | |- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) C_ ( A [,] B ) ) |
| 104 | 103 | sseld | |- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( ( B + ( x / 2 ) ) e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) -> ( B + ( x / 2 ) ) e. ( A [,] B ) ) ) |
| 105 | elicc2 | |- ( ( A e. RR /\ B e. RR ) -> ( ( B + ( x / 2 ) ) e. ( A [,] B ) <-> ( ( B + ( x / 2 ) ) e. RR /\ A <_ ( B + ( x / 2 ) ) /\ ( B + ( x / 2 ) ) <_ B ) ) ) |
|
| 106 | simp3 | |- ( ( ( B + ( x / 2 ) ) e. RR /\ A <_ ( B + ( x / 2 ) ) /\ ( B + ( x / 2 ) ) <_ B ) -> ( B + ( x / 2 ) ) <_ B ) |
|
| 107 | 105 106 | biimtrdi | |- ( ( A e. RR /\ B e. RR ) -> ( ( B + ( x / 2 ) ) e. ( A [,] B ) -> ( B + ( x / 2 ) ) <_ B ) ) |
| 108 | 107 | ad2antrr | |- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( ( B + ( x / 2 ) ) e. ( A [,] B ) -> ( B + ( x / 2 ) ) <_ B ) ) |
| 109 | 102 104 108 | 3syld | |- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> ( ( B ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) -> ( B + ( x / 2 ) ) <_ B ) ) |
| 110 | 84 109 | mtod | |- ( ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) /\ x e. RR+ ) -> -. ( B ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) |
| 111 | 110 | nrexdv | |- ( ( ( A e. RR /\ B e. RR ) /\ B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) -> -. E. x e. RR+ ( B ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) x ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) |
| 112 | 77 111 | pm2.65da | |- ( ( A e. RR /\ B e. RR ) -> -. B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) |
| 113 | eleq1 | |- ( x = A -> ( x e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) <-> A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) ) |
|
| 114 | 113 | notbid | |- ( x = A -> ( -. x e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) <-> -. A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) ) |
| 115 | eleq1 | |- ( x = B -> ( x e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) <-> B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) ) |
|
| 116 | 115 | notbid | |- ( x = B -> ( -. x e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) <-> -. B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) ) |
| 117 | 114 116 | ralprg | |- ( ( A e. RR /\ B e. RR ) -> ( A. x e. { A , B } -. x e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) <-> ( -. A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) /\ -. B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) ) ) |
| 118 | 74 112 117 | mpbir2and | |- ( ( A e. RR /\ B e. RR ) -> A. x e. { A , B } -. x e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) |
| 119 | disjr | |- ( ( ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) i^i { A , B } ) = (/) <-> A. x e. { A , B } -. x e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) |
|
| 120 | 118 119 | sylibr | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) i^i { A , B } ) = (/) ) |
| 121 | disjssun | |- ( ( ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) i^i { A , B } ) = (/) -> ( ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) C_ ( { A , B } u. ( A (,) B ) ) <-> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) C_ ( A (,) B ) ) ) |
|
| 122 | 120 121 | syl | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) C_ ( { A , B } u. ( A (,) B ) ) <-> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) C_ ( A (,) B ) ) ) |
| 123 | 27 122 | mpbid | |- ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) C_ ( A (,) B ) ) |
| 124 | iooretop | |- ( A (,) B ) e. ( topGen ` ran (,) ) |
|
| 125 | ioossicc | |- ( A (,) B ) C_ ( A [,] B ) |
|
| 126 | 14 | ssntr | |- ( ( ( ( topGen ` ran (,) ) e. Top /\ ( A [,] B ) C_ RR ) /\ ( ( A (,) B ) e. ( topGen ` ran (,) ) /\ ( A (,) B ) C_ ( A [,] B ) ) ) -> ( A (,) B ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) |
| 127 | 124 125 126 | mpanr12 | |- ( ( ( topGen ` ran (,) ) e. Top /\ ( A [,] B ) C_ RR ) -> ( A (,) B ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) |
| 128 | 7 13 127 | sylancr | |- ( ( A e. RR /\ B e. RR ) -> ( A (,) B ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) |
| 129 | 123 128 | eqssd | |- ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |