This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity function is a continuous function on CC . (Contributed by Jeff Madsen, 11-Jun-2010) (Revised by Mario Carneiro, 17-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cncfmptid | |- ( ( S C_ T /\ T C_ CC ) -> ( x e. S |-> x ) e. ( S -cn-> T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfss | |- ( ( S C_ T /\ T C_ CC ) -> ( S -cn-> S ) C_ ( S -cn-> T ) ) |
|
| 2 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 3 | 2 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 4 | sstr | |- ( ( S C_ T /\ T C_ CC ) -> S C_ CC ) |
|
| 5 | resttopon | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ S C_ CC ) -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) |
|
| 6 | 3 4 5 | sylancr | |- ( ( S C_ T /\ T C_ CC ) -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) |
| 7 | 6 | cnmptid | |- ( ( S C_ T /\ T C_ CC ) -> ( x e. S |-> x ) e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( ( TopOpen ` CCfld ) |`t S ) ) ) |
| 8 | eqid | |- ( ( TopOpen ` CCfld ) |`t S ) = ( ( TopOpen ` CCfld ) |`t S ) |
|
| 9 | 2 8 8 | cncfcn | |- ( ( S C_ CC /\ S C_ CC ) -> ( S -cn-> S ) = ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( ( TopOpen ` CCfld ) |`t S ) ) ) |
| 10 | 4 4 9 | syl2anc | |- ( ( S C_ T /\ T C_ CC ) -> ( S -cn-> S ) = ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( ( TopOpen ` CCfld ) |`t S ) ) ) |
| 11 | 7 10 | eleqtrrd | |- ( ( S C_ T /\ T C_ CC ) -> ( x e. S |-> x ) e. ( S -cn-> S ) ) |
| 12 | 1 11 | sseldd | |- ( ( S C_ T /\ T C_ CC ) -> ( x e. S |-> x ) e. ( S -cn-> T ) ) |