This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A constant function is a continuous function on CC . (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 7-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cncfmptc | |- ( ( A e. T /\ S C_ CC /\ T C_ CC ) -> ( x e. S |-> A ) e. ( S -cn-> T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 2 | 1 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 3 | simp2 | |- ( ( A e. T /\ S C_ CC /\ T C_ CC ) -> S C_ CC ) |
|
| 4 | resttopon | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ S C_ CC ) -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) |
|
| 5 | 2 3 4 | sylancr | |- ( ( A e. T /\ S C_ CC /\ T C_ CC ) -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) |
| 6 | simp3 | |- ( ( A e. T /\ S C_ CC /\ T C_ CC ) -> T C_ CC ) |
|
| 7 | resttopon | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ T C_ CC ) -> ( ( TopOpen ` CCfld ) |`t T ) e. ( TopOn ` T ) ) |
|
| 8 | 2 6 7 | sylancr | |- ( ( A e. T /\ S C_ CC /\ T C_ CC ) -> ( ( TopOpen ` CCfld ) |`t T ) e. ( TopOn ` T ) ) |
| 9 | simp1 | |- ( ( A e. T /\ S C_ CC /\ T C_ CC ) -> A e. T ) |
|
| 10 | 5 8 9 | cnmptc | |- ( ( A e. T /\ S C_ CC /\ T C_ CC ) -> ( x e. S |-> A ) e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( ( TopOpen ` CCfld ) |`t T ) ) ) |
| 11 | eqid | |- ( ( TopOpen ` CCfld ) |`t S ) = ( ( TopOpen ` CCfld ) |`t S ) |
|
| 12 | eqid | |- ( ( TopOpen ` CCfld ) |`t T ) = ( ( TopOpen ` CCfld ) |`t T ) |
|
| 13 | 1 11 12 | cncfcn | |- ( ( S C_ CC /\ T C_ CC ) -> ( S -cn-> T ) = ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( ( TopOpen ` CCfld ) |`t T ) ) ) |
| 14 | 13 | 3adant1 | |- ( ( A e. T /\ S C_ CC /\ T C_ CC ) -> ( S -cn-> T ) = ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( ( TopOpen ` CCfld ) |`t T ) ) ) |
| 15 | 10 14 | eleqtrrd | |- ( ( A e. T /\ S C_ CC /\ T C_ CC ) -> ( x e. S |-> A ) e. ( S -cn-> T ) ) |