This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function-builder for derivative, addition rule. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvmptadd.s | |- ( ph -> S e. { RR , CC } ) |
|
| dvmptadd.a | |- ( ( ph /\ x e. X ) -> A e. CC ) |
||
| dvmptadd.b | |- ( ( ph /\ x e. X ) -> B e. V ) |
||
| dvmptadd.da | |- ( ph -> ( S _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) |
||
| dvmptadd.c | |- ( ( ph /\ x e. X ) -> C e. CC ) |
||
| dvmptadd.d | |- ( ( ph /\ x e. X ) -> D e. W ) |
||
| dvmptadd.dc | |- ( ph -> ( S _D ( x e. X |-> C ) ) = ( x e. X |-> D ) ) |
||
| Assertion | dvmptadd | |- ( ph -> ( S _D ( x e. X |-> ( A + C ) ) ) = ( x e. X |-> ( B + D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptadd.s | |- ( ph -> S e. { RR , CC } ) |
|
| 2 | dvmptadd.a | |- ( ( ph /\ x e. X ) -> A e. CC ) |
|
| 3 | dvmptadd.b | |- ( ( ph /\ x e. X ) -> B e. V ) |
|
| 4 | dvmptadd.da | |- ( ph -> ( S _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) |
|
| 5 | dvmptadd.c | |- ( ( ph /\ x e. X ) -> C e. CC ) |
|
| 6 | dvmptadd.d | |- ( ( ph /\ x e. X ) -> D e. W ) |
|
| 7 | dvmptadd.dc | |- ( ph -> ( S _D ( x e. X |-> C ) ) = ( x e. X |-> D ) ) |
|
| 8 | 2 | fmpttd | |- ( ph -> ( x e. X |-> A ) : X --> CC ) |
| 9 | 5 | fmpttd | |- ( ph -> ( x e. X |-> C ) : X --> CC ) |
| 10 | 4 | dmeqd | |- ( ph -> dom ( S _D ( x e. X |-> A ) ) = dom ( x e. X |-> B ) ) |
| 11 | 3 | ralrimiva | |- ( ph -> A. x e. X B e. V ) |
| 12 | dmmptg | |- ( A. x e. X B e. V -> dom ( x e. X |-> B ) = X ) |
|
| 13 | 11 12 | syl | |- ( ph -> dom ( x e. X |-> B ) = X ) |
| 14 | 10 13 | eqtrd | |- ( ph -> dom ( S _D ( x e. X |-> A ) ) = X ) |
| 15 | 7 | dmeqd | |- ( ph -> dom ( S _D ( x e. X |-> C ) ) = dom ( x e. X |-> D ) ) |
| 16 | 6 | ralrimiva | |- ( ph -> A. x e. X D e. W ) |
| 17 | dmmptg | |- ( A. x e. X D e. W -> dom ( x e. X |-> D ) = X ) |
|
| 18 | 16 17 | syl | |- ( ph -> dom ( x e. X |-> D ) = X ) |
| 19 | 15 18 | eqtrd | |- ( ph -> dom ( S _D ( x e. X |-> C ) ) = X ) |
| 20 | 1 8 9 14 19 | dvaddf | |- ( ph -> ( S _D ( ( x e. X |-> A ) oF + ( x e. X |-> C ) ) ) = ( ( S _D ( x e. X |-> A ) ) oF + ( S _D ( x e. X |-> C ) ) ) ) |
| 21 | ovex | |- ( S _D ( x e. X |-> C ) ) e. _V |
|
| 22 | 21 | dmex | |- dom ( S _D ( x e. X |-> C ) ) e. _V |
| 23 | 19 22 | eqeltrrdi | |- ( ph -> X e. _V ) |
| 24 | eqidd | |- ( ph -> ( x e. X |-> A ) = ( x e. X |-> A ) ) |
|
| 25 | eqidd | |- ( ph -> ( x e. X |-> C ) = ( x e. X |-> C ) ) |
|
| 26 | 23 2 5 24 25 | offval2 | |- ( ph -> ( ( x e. X |-> A ) oF + ( x e. X |-> C ) ) = ( x e. X |-> ( A + C ) ) ) |
| 27 | 26 | oveq2d | |- ( ph -> ( S _D ( ( x e. X |-> A ) oF + ( x e. X |-> C ) ) ) = ( S _D ( x e. X |-> ( A + C ) ) ) ) |
| 28 | 23 3 6 4 7 | offval2 | |- ( ph -> ( ( S _D ( x e. X |-> A ) ) oF + ( S _D ( x e. X |-> C ) ) ) = ( x e. X |-> ( B + D ) ) ) |
| 29 | 20 27 28 | 3eqtr3d | |- ( ph -> ( S _D ( x e. X |-> ( A + C ) ) ) = ( x e. X |-> ( B + D ) ) ) |