This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change the codomain of a continuous complex function. (Contributed by Paul Chapman, 18-Oct-2007) (Revised by Mario Carneiro, 1-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cncfcdm | |- ( ( C C_ CC /\ F e. ( A -cn-> B ) ) -> ( F e. ( A -cn-> C ) <-> F : A --> C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfi | |- ( ( F e. ( A -cn-> B ) /\ x e. A /\ y e. RR+ ) -> E. z e. RR+ A. w e. A ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( F ` w ) - ( F ` x ) ) ) < y ) ) |
|
| 2 | 1 | 3expb | |- ( ( F e. ( A -cn-> B ) /\ ( x e. A /\ y e. RR+ ) ) -> E. z e. RR+ A. w e. A ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( F ` w ) - ( F ` x ) ) ) < y ) ) |
| 3 | 2 | ralrimivva | |- ( F e. ( A -cn-> B ) -> A. x e. A A. y e. RR+ E. z e. RR+ A. w e. A ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( F ` w ) - ( F ` x ) ) ) < y ) ) |
| 4 | 3 | adantl | |- ( ( C C_ CC /\ F e. ( A -cn-> B ) ) -> A. x e. A A. y e. RR+ E. z e. RR+ A. w e. A ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( F ` w ) - ( F ` x ) ) ) < y ) ) |
| 5 | cncfrss | |- ( F e. ( A -cn-> B ) -> A C_ CC ) |
|
| 6 | simpl | |- ( ( C C_ CC /\ F e. ( A -cn-> B ) ) -> C C_ CC ) |
|
| 7 | elcncf2 | |- ( ( A C_ CC /\ C C_ CC ) -> ( F e. ( A -cn-> C ) <-> ( F : A --> C /\ A. x e. A A. y e. RR+ E. z e. RR+ A. w e. A ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( F ` w ) - ( F ` x ) ) ) < y ) ) ) ) |
|
| 8 | 5 6 7 | syl2an2 | |- ( ( C C_ CC /\ F e. ( A -cn-> B ) ) -> ( F e. ( A -cn-> C ) <-> ( F : A --> C /\ A. x e. A A. y e. RR+ E. z e. RR+ A. w e. A ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( F ` w ) - ( F ` x ) ) ) < y ) ) ) ) |
| 9 | 4 8 | mpbiran2d | |- ( ( C C_ CC /\ F e. ( A -cn-> B ) ) -> ( F e. ( A -cn-> C ) <-> F : A --> C ) ) |