This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Continuity of the composition operation as a function on continuous function spaces. (Contributed by Mario Carneiro, 20-Mar-2015) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xkococn.1 | ⊢ 𝐹 = ( 𝑓 ∈ ( 𝑆 Cn 𝑇 ) , 𝑔 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑓 ∘ 𝑔 ) ) | |
| xkococn.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑛-Locally Comp ) | ||
| xkococn.k | ⊢ ( 𝜑 → 𝐾 ⊆ ∪ 𝑅 ) | ||
| xkococn.c | ⊢ ( 𝜑 → ( 𝑅 ↾t 𝐾 ) ∈ Comp ) | ||
| xkococn.v | ⊢ ( 𝜑 → 𝑉 ∈ 𝑇 ) | ||
| xkococn.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝑆 Cn 𝑇 ) ) | ||
| xkococn.b | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝑅 Cn 𝑆 ) ) | ||
| xkococn.i | ⊢ ( 𝜑 → ( ( 𝐴 ∘ 𝐵 ) “ 𝐾 ) ⊆ 𝑉 ) | ||
| Assertion | xkococnlem | ⊢ ( 𝜑 → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 〈 𝐴 , 𝐵 〉 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xkococn.1 | ⊢ 𝐹 = ( 𝑓 ∈ ( 𝑆 Cn 𝑇 ) , 𝑔 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑓 ∘ 𝑔 ) ) | |
| 2 | xkococn.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑛-Locally Comp ) | |
| 3 | xkococn.k | ⊢ ( 𝜑 → 𝐾 ⊆ ∪ 𝑅 ) | |
| 4 | xkococn.c | ⊢ ( 𝜑 → ( 𝑅 ↾t 𝐾 ) ∈ Comp ) | |
| 5 | xkococn.v | ⊢ ( 𝜑 → 𝑉 ∈ 𝑇 ) | |
| 6 | xkococn.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝑆 Cn 𝑇 ) ) | |
| 7 | xkococn.b | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝑅 Cn 𝑆 ) ) | |
| 8 | xkococn.i | ⊢ ( 𝜑 → ( ( 𝐴 ∘ 𝐵 ) “ 𝐾 ) ⊆ 𝑉 ) | |
| 9 | imacmp | ⊢ ( ( 𝐵 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑅 ↾t 𝐾 ) ∈ Comp ) → ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∈ Comp ) | |
| 10 | 7 4 9 | syl2anc | ⊢ ( 𝜑 → ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∈ Comp ) |
| 11 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) → 𝑆 ∈ 𝑛-Locally Comp ) |
| 12 | cnima | ⊢ ( ( 𝐴 ∈ ( 𝑆 Cn 𝑇 ) ∧ 𝑉 ∈ 𝑇 ) → ( ◡ 𝐴 “ 𝑉 ) ∈ 𝑆 ) | |
| 13 | 6 5 12 | syl2anc | ⊢ ( 𝜑 → ( ◡ 𝐴 “ 𝑉 ) ∈ 𝑆 ) |
| 14 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) → ( ◡ 𝐴 “ 𝑉 ) ∈ 𝑆 ) |
| 15 | imaco | ⊢ ( ( 𝐴 ∘ 𝐵 ) “ 𝐾 ) = ( 𝐴 “ ( 𝐵 “ 𝐾 ) ) | |
| 16 | 15 8 | eqsstrrid | ⊢ ( 𝜑 → ( 𝐴 “ ( 𝐵 “ 𝐾 ) ) ⊆ 𝑉 ) |
| 17 | eqid | ⊢ ∪ 𝑆 = ∪ 𝑆 | |
| 18 | eqid | ⊢ ∪ 𝑇 = ∪ 𝑇 | |
| 19 | 17 18 | cnf | ⊢ ( 𝐴 ∈ ( 𝑆 Cn 𝑇 ) → 𝐴 : ∪ 𝑆 ⟶ ∪ 𝑇 ) |
| 20 | ffun | ⊢ ( 𝐴 : ∪ 𝑆 ⟶ ∪ 𝑇 → Fun 𝐴 ) | |
| 21 | 6 19 20 | 3syl | ⊢ ( 𝜑 → Fun 𝐴 ) |
| 22 | imassrn | ⊢ ( 𝐵 “ 𝐾 ) ⊆ ran 𝐵 | |
| 23 | eqid | ⊢ ∪ 𝑅 = ∪ 𝑅 | |
| 24 | 23 17 | cnf | ⊢ ( 𝐵 ∈ ( 𝑅 Cn 𝑆 ) → 𝐵 : ∪ 𝑅 ⟶ ∪ 𝑆 ) |
| 25 | frn | ⊢ ( 𝐵 : ∪ 𝑅 ⟶ ∪ 𝑆 → ran 𝐵 ⊆ ∪ 𝑆 ) | |
| 26 | 7 24 25 | 3syl | ⊢ ( 𝜑 → ran 𝐵 ⊆ ∪ 𝑆 ) |
| 27 | 22 26 | sstrid | ⊢ ( 𝜑 → ( 𝐵 “ 𝐾 ) ⊆ ∪ 𝑆 ) |
| 28 | fdm | ⊢ ( 𝐴 : ∪ 𝑆 ⟶ ∪ 𝑇 → dom 𝐴 = ∪ 𝑆 ) | |
| 29 | 6 19 28 | 3syl | ⊢ ( 𝜑 → dom 𝐴 = ∪ 𝑆 ) |
| 30 | 27 29 | sseqtrrd | ⊢ ( 𝜑 → ( 𝐵 “ 𝐾 ) ⊆ dom 𝐴 ) |
| 31 | funimass3 | ⊢ ( ( Fun 𝐴 ∧ ( 𝐵 “ 𝐾 ) ⊆ dom 𝐴 ) → ( ( 𝐴 “ ( 𝐵 “ 𝐾 ) ) ⊆ 𝑉 ↔ ( 𝐵 “ 𝐾 ) ⊆ ( ◡ 𝐴 “ 𝑉 ) ) ) | |
| 32 | 21 30 31 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 “ ( 𝐵 “ 𝐾 ) ) ⊆ 𝑉 ↔ ( 𝐵 “ 𝐾 ) ⊆ ( ◡ 𝐴 “ 𝑉 ) ) ) |
| 33 | 16 32 | mpbid | ⊢ ( 𝜑 → ( 𝐵 “ 𝐾 ) ⊆ ( ◡ 𝐴 “ 𝑉 ) ) |
| 34 | 33 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) → 𝑥 ∈ ( ◡ 𝐴 “ 𝑉 ) ) |
| 35 | nlly2i | ⊢ ( ( 𝑆 ∈ 𝑛-Locally Comp ∧ ( ◡ 𝐴 “ 𝑉 ) ∈ 𝑆 ∧ 𝑥 ∈ ( ◡ 𝐴 “ 𝑉 ) ) → ∃ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∃ 𝑢 ∈ 𝑆 ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) | |
| 36 | 11 14 34 35 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) → ∃ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∃ 𝑢 ∈ 𝑆 ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) |
| 37 | nllytop | ⊢ ( 𝑆 ∈ 𝑛-Locally Comp → 𝑆 ∈ Top ) | |
| 38 | 2 37 | syl | ⊢ ( 𝜑 → 𝑆 ∈ Top ) |
| 39 | 38 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) ∧ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ) ∧ ( 𝑢 ∈ 𝑆 ∧ ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑆 ∈ Top ) |
| 40 | imaexg | ⊢ ( 𝐵 ∈ ( 𝑅 Cn 𝑆 ) → ( 𝐵 “ 𝐾 ) ∈ V ) | |
| 41 | 7 40 | syl | ⊢ ( 𝜑 → ( 𝐵 “ 𝐾 ) ∈ V ) |
| 42 | 41 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) ∧ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ) ∧ ( 𝑢 ∈ 𝑆 ∧ ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 𝐵 “ 𝐾 ) ∈ V ) |
| 43 | simprl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) ∧ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ) ∧ ( 𝑢 ∈ 𝑆 ∧ ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑢 ∈ 𝑆 ) | |
| 44 | elrestr | ⊢ ( ( 𝑆 ∈ Top ∧ ( 𝐵 “ 𝐾 ) ∈ V ∧ 𝑢 ∈ 𝑆 ) → ( 𝑢 ∩ ( 𝐵 “ 𝐾 ) ) ∈ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ) | |
| 45 | 39 42 43 44 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) ∧ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ) ∧ ( 𝑢 ∈ 𝑆 ∧ ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 𝑢 ∩ ( 𝐵 “ 𝐾 ) ) ∈ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ) |
| 46 | simprr1 | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) ∧ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ) ∧ ( 𝑢 ∈ 𝑆 ∧ ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑥 ∈ 𝑢 ) | |
| 47 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) ∧ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ) ∧ ( 𝑢 ∈ 𝑆 ∧ ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) | |
| 48 | 46 47 | elind | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) ∧ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ) ∧ ( 𝑢 ∈ 𝑆 ∧ ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑥 ∈ ( 𝑢 ∩ ( 𝐵 “ 𝐾 ) ) ) |
| 49 | inss1 | ⊢ ( 𝑢 ∩ ( 𝐵 “ 𝐾 ) ) ⊆ 𝑢 | |
| 50 | elpwi | ⊢ ( 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) → 𝑠 ⊆ ( ◡ 𝐴 “ 𝑉 ) ) | |
| 51 | 50 | ad2antlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) ∧ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ) ∧ ( 𝑢 ∈ 𝑆 ∧ ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑠 ⊆ ( ◡ 𝐴 “ 𝑉 ) ) |
| 52 | elssuni | ⊢ ( ( ◡ 𝐴 “ 𝑉 ) ∈ 𝑆 → ( ◡ 𝐴 “ 𝑉 ) ⊆ ∪ 𝑆 ) | |
| 53 | 13 52 | syl | ⊢ ( 𝜑 → ( ◡ 𝐴 “ 𝑉 ) ⊆ ∪ 𝑆 ) |
| 54 | 53 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) ∧ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ) ∧ ( 𝑢 ∈ 𝑆 ∧ ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) → ( ◡ 𝐴 “ 𝑉 ) ⊆ ∪ 𝑆 ) |
| 55 | 51 54 | sstrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) ∧ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ) ∧ ( 𝑢 ∈ 𝑆 ∧ ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑠 ⊆ ∪ 𝑆 ) |
| 56 | simprr2 | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) ∧ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ) ∧ ( 𝑢 ∈ 𝑆 ∧ ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑢 ⊆ 𝑠 ) | |
| 57 | 17 | ssntr | ⊢ ( ( ( 𝑆 ∈ Top ∧ 𝑠 ⊆ ∪ 𝑆 ) ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑢 ⊆ 𝑠 ) ) → 𝑢 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ) |
| 58 | 39 55 43 56 57 | syl22anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) ∧ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ) ∧ ( 𝑢 ∈ 𝑆 ∧ ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑢 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ) |
| 59 | 49 58 | sstrid | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) ∧ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ) ∧ ( 𝑢 ∈ 𝑆 ∧ ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 𝑢 ∩ ( 𝐵 “ 𝐾 ) ) ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ) |
| 60 | simprr3 | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) ∧ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ) ∧ ( 𝑢 ∈ 𝑆 ∧ ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 𝑆 ↾t 𝑠 ) ∈ Comp ) | |
| 61 | 59 60 | jca | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) ∧ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ) ∧ ( 𝑢 ∈ 𝑆 ∧ ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) → ( ( 𝑢 ∩ ( 𝐵 “ 𝐾 ) ) ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) |
| 62 | eleq2 | ⊢ ( 𝑦 = ( 𝑢 ∩ ( 𝐵 “ 𝐾 ) ) → ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ ( 𝑢 ∩ ( 𝐵 “ 𝐾 ) ) ) ) | |
| 63 | cleq1lem | ⊢ ( 𝑦 = ( 𝑢 ∩ ( 𝐵 “ 𝐾 ) ) → ( ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ↔ ( ( 𝑢 ∩ ( 𝐵 “ 𝐾 ) ) ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) | |
| 64 | 62 63 | anbi12d | ⊢ ( 𝑦 = ( 𝑢 ∩ ( 𝐵 “ 𝐾 ) ) → ( ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ↔ ( 𝑥 ∈ ( 𝑢 ∩ ( 𝐵 “ 𝐾 ) ) ∧ ( ( 𝑢 ∩ ( 𝐵 “ 𝐾 ) ) ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) ) |
| 65 | 64 | rspcev | ⊢ ( ( ( 𝑢 ∩ ( 𝐵 “ 𝐾 ) ) ∈ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∧ ( 𝑥 ∈ ( 𝑢 ∩ ( 𝐵 “ 𝐾 ) ) ∧ ( ( 𝑢 ∩ ( 𝐵 “ 𝐾 ) ) ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) → ∃ 𝑦 ∈ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) |
| 66 | 45 48 61 65 | syl12anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) ∧ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ) ∧ ( 𝑢 ∈ 𝑆 ∧ ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) → ∃ 𝑦 ∈ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) |
| 67 | 66 | rexlimdvaa | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) ∧ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ) → ( ∃ 𝑢 ∈ 𝑆 ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) → ∃ 𝑦 ∈ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) ) |
| 68 | 67 | reximdva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) → ( ∃ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∃ 𝑢 ∈ 𝑆 ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) → ∃ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∃ 𝑦 ∈ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) ) |
| 69 | 36 68 | mpd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) → ∃ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∃ 𝑦 ∈ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) |
| 70 | rexcom | ⊢ ( ∃ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∃ 𝑦 ∈ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ↔ ∃ 𝑦 ∈ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∃ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) | |
| 71 | r19.42v | ⊢ ( ∃ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ↔ ( 𝑥 ∈ 𝑦 ∧ ∃ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) | |
| 72 | 71 | rexbii | ⊢ ( ∃ 𝑦 ∈ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∃ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ↔ ∃ 𝑦 ∈ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ( 𝑥 ∈ 𝑦 ∧ ∃ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) |
| 73 | 70 72 | bitri | ⊢ ( ∃ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∃ 𝑦 ∈ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ↔ ∃ 𝑦 ∈ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ( 𝑥 ∈ 𝑦 ∧ ∃ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) |
| 74 | 69 73 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) → ∃ 𝑦 ∈ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ( 𝑥 ∈ 𝑦 ∧ ∃ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) |
| 75 | 74 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ∃ 𝑦 ∈ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ( 𝑥 ∈ 𝑦 ∧ ∃ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) |
| 76 | 17 | restuni | ⊢ ( ( 𝑆 ∈ Top ∧ ( 𝐵 “ 𝐾 ) ⊆ ∪ 𝑆 ) → ( 𝐵 “ 𝐾 ) = ∪ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ) |
| 77 | 38 27 76 | syl2anc | ⊢ ( 𝜑 → ( 𝐵 “ 𝐾 ) = ∪ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ) |
| 78 | 75 77 | raleqtrdv | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ∪ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∃ 𝑦 ∈ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ( 𝑥 ∈ 𝑦 ∧ ∃ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) |
| 79 | eqid | ⊢ ∪ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) = ∪ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) | |
| 80 | fveq2 | ⊢ ( 𝑠 = ( 𝑘 ‘ 𝑦 ) → ( ( int ‘ 𝑆 ) ‘ 𝑠 ) = ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) | |
| 81 | 80 | sseq2d | ⊢ ( 𝑠 = ( 𝑘 ‘ 𝑦 ) → ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ↔ 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) |
| 82 | oveq2 | ⊢ ( 𝑠 = ( 𝑘 ‘ 𝑦 ) → ( 𝑆 ↾t 𝑠 ) = ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ) | |
| 83 | 82 | eleq1d | ⊢ ( 𝑠 = ( 𝑘 ‘ 𝑦 ) → ( ( 𝑆 ↾t 𝑠 ) ∈ Comp ↔ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) |
| 84 | 81 83 | anbi12d | ⊢ ( 𝑠 = ( 𝑘 ‘ 𝑦 ) → ( ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ↔ ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) |
| 85 | 79 84 | cmpcovf | ⊢ ( ( ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∈ Comp ∧ ∀ 𝑥 ∈ ∪ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∃ 𝑦 ∈ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ( 𝑥 ∈ 𝑦 ∧ ∃ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) → ∃ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ( ∪ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) = ∪ 𝑤 ∧ ∃ 𝑘 ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) |
| 86 | 10 78 85 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ( ∪ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) = ∪ 𝑤 ∧ ∃ 𝑘 ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) |
| 87 | 77 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) → ( 𝐵 “ 𝐾 ) = ∪ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ) |
| 88 | 87 | eqeq1d | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) → ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ↔ ∪ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) = ∪ 𝑤 ) ) |
| 89 | 88 | biimpar | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ∪ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) = ∪ 𝑤 ) → ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ) |
| 90 | 38 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → 𝑆 ∈ Top ) |
| 91 | cntop2 | ⊢ ( 𝐴 ∈ ( 𝑆 Cn 𝑇 ) → 𝑇 ∈ Top ) | |
| 92 | 6 91 | syl | ⊢ ( 𝜑 → 𝑇 ∈ Top ) |
| 93 | 92 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → 𝑇 ∈ Top ) |
| 94 | xkotop | ⊢ ( ( 𝑆 ∈ Top ∧ 𝑇 ∈ Top ) → ( 𝑇 ↑ko 𝑆 ) ∈ Top ) | |
| 95 | 90 93 94 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ( 𝑇 ↑ko 𝑆 ) ∈ Top ) |
| 96 | cntop1 | ⊢ ( 𝐵 ∈ ( 𝑅 Cn 𝑆 ) → 𝑅 ∈ Top ) | |
| 97 | 7 96 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Top ) |
| 98 | 97 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → 𝑅 ∈ Top ) |
| 99 | xkotop | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑆 ↑ko 𝑅 ) ∈ Top ) | |
| 100 | 98 90 99 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ( 𝑆 ↑ko 𝑅 ) ∈ Top ) |
| 101 | simprrl | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ) | |
| 102 | 101 | frnd | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ran 𝑘 ⊆ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ) |
| 103 | sspwuni | ⊢ ( ran 𝑘 ⊆ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ↔ ∪ ran 𝑘 ⊆ ( ◡ 𝐴 “ 𝑉 ) ) | |
| 104 | 102 103 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ∪ ran 𝑘 ⊆ ( ◡ 𝐴 “ 𝑉 ) ) |
| 105 | 13 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ( ◡ 𝐴 “ 𝑉 ) ∈ 𝑆 ) |
| 106 | 105 52 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ( ◡ 𝐴 “ 𝑉 ) ⊆ ∪ 𝑆 ) |
| 107 | 104 106 | sstrd | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ∪ ran 𝑘 ⊆ ∪ 𝑆 ) |
| 108 | ffn | ⊢ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) → 𝑘 Fn 𝑤 ) | |
| 109 | fniunfv | ⊢ ( 𝑘 Fn 𝑤 → ∪ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) = ∪ ran 𝑘 ) | |
| 110 | 101 108 109 | 3syl | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ∪ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) = ∪ ran 𝑘 ) |
| 111 | 110 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ( 𝑆 ↾t ∪ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ) = ( 𝑆 ↾t ∪ ran 𝑘 ) ) |
| 112 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) | |
| 113 | 112 | elin2d | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → 𝑤 ∈ Fin ) |
| 114 | simprrr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) | |
| 115 | simpr | ⊢ ( ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) → ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) | |
| 116 | 115 | ralimi | ⊢ ( ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) → ∀ 𝑦 ∈ 𝑤 ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) |
| 117 | 114 116 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ∀ 𝑦 ∈ 𝑤 ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) |
| 118 | 17 | fiuncmp | ⊢ ( ( 𝑆 ∈ Top ∧ 𝑤 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) → ( 𝑆 ↾t ∪ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) |
| 119 | 90 113 117 118 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ( 𝑆 ↾t ∪ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) |
| 120 | 111 119 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ( 𝑆 ↾t ∪ ran 𝑘 ) ∈ Comp ) |
| 121 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → 𝑉 ∈ 𝑇 ) |
| 122 | 17 90 93 107 120 121 | xkoopn | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } ∈ ( 𝑇 ↑ko 𝑆 ) ) |
| 123 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → 𝐾 ⊆ ∪ 𝑅 ) |
| 124 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ( 𝑅 ↾t 𝐾 ) ∈ Comp ) |
| 125 | 110 107 | eqsstrd | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ∪ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ⊆ ∪ 𝑆 ) |
| 126 | iunss | ⊢ ( ∪ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ⊆ ∪ 𝑆 ↔ ∀ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ⊆ ∪ 𝑆 ) | |
| 127 | 125 126 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ∀ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ⊆ ∪ 𝑆 ) |
| 128 | 17 | ntropn | ⊢ ( ( 𝑆 ∈ Top ∧ ( 𝑘 ‘ 𝑦 ) ⊆ ∪ 𝑆 ) → ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∈ 𝑆 ) |
| 129 | 128 | ex | ⊢ ( 𝑆 ∈ Top → ( ( 𝑘 ‘ 𝑦 ) ⊆ ∪ 𝑆 → ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∈ 𝑆 ) ) |
| 130 | 129 | ralimdv | ⊢ ( 𝑆 ∈ Top → ( ∀ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ⊆ ∪ 𝑆 → ∀ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∈ 𝑆 ) ) |
| 131 | 90 127 130 | sylc | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ∀ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∈ 𝑆 ) |
| 132 | iunopn | ⊢ ( ( 𝑆 ∈ Top ∧ ∀ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∈ 𝑆 ) → ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∈ 𝑆 ) | |
| 133 | 90 131 132 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∈ 𝑆 ) |
| 134 | 23 98 90 123 124 133 | xkoopn | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ∈ ( 𝑆 ↑ko 𝑅 ) ) |
| 135 | txopn | ⊢ ( ( ( ( 𝑇 ↑ko 𝑆 ) ∈ Top ∧ ( 𝑆 ↑ko 𝑅 ) ∈ Top ) ∧ ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } ∈ ( 𝑇 ↑ko 𝑆 ) ∧ { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ∈ ( 𝑆 ↑ko 𝑅 ) ) ) → ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ) | |
| 136 | 95 100 122 134 135 | syl22anc | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ) |
| 137 | imaeq1 | ⊢ ( 𝑎 = 𝐴 → ( 𝑎 “ ∪ ran 𝑘 ) = ( 𝐴 “ ∪ ran 𝑘 ) ) | |
| 138 | 137 | sseq1d | ⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 ↔ ( 𝐴 “ ∪ ran 𝑘 ) ⊆ 𝑉 ) ) |
| 139 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → 𝐴 ∈ ( 𝑆 Cn 𝑇 ) ) |
| 140 | imaiun | ⊢ ( 𝐴 “ ∪ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ) = ∪ 𝑦 ∈ 𝑤 ( 𝐴 “ ( 𝑘 ‘ 𝑦 ) ) | |
| 141 | 110 | imaeq2d | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ( 𝐴 “ ∪ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ) = ( 𝐴 “ ∪ ran 𝑘 ) ) |
| 142 | 140 141 | eqtr3id | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ∪ 𝑦 ∈ 𝑤 ( 𝐴 “ ( 𝑘 ‘ 𝑦 ) ) = ( 𝐴 “ ∪ ran 𝑘 ) ) |
| 143 | 110 104 | eqsstrd | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ∪ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ⊆ ( ◡ 𝐴 “ 𝑉 ) ) |
| 144 | 21 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → Fun 𝐴 ) |
| 145 | 101 108 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → 𝑘 Fn 𝑤 ) |
| 146 | 29 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → dom 𝐴 = ∪ 𝑆 ) |
| 147 | 107 146 | sseqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ∪ ran 𝑘 ⊆ dom 𝐴 ) |
| 148 | simpl1 | ⊢ ( ( ( Fun 𝐴 ∧ 𝑘 Fn 𝑤 ∧ ∪ ran 𝑘 ⊆ dom 𝐴 ) ∧ 𝑦 ∈ 𝑤 ) → Fun 𝐴 ) | |
| 149 | 109 | 3ad2ant2 | ⊢ ( ( Fun 𝐴 ∧ 𝑘 Fn 𝑤 ∧ ∪ ran 𝑘 ⊆ dom 𝐴 ) → ∪ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) = ∪ ran 𝑘 ) |
| 150 | simp3 | ⊢ ( ( Fun 𝐴 ∧ 𝑘 Fn 𝑤 ∧ ∪ ran 𝑘 ⊆ dom 𝐴 ) → ∪ ran 𝑘 ⊆ dom 𝐴 ) | |
| 151 | 149 150 | eqsstrd | ⊢ ( ( Fun 𝐴 ∧ 𝑘 Fn 𝑤 ∧ ∪ ran 𝑘 ⊆ dom 𝐴 ) → ∪ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ⊆ dom 𝐴 ) |
| 152 | iunss | ⊢ ( ∪ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ⊆ dom 𝐴 ↔ ∀ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ⊆ dom 𝐴 ) | |
| 153 | 151 152 | sylib | ⊢ ( ( Fun 𝐴 ∧ 𝑘 Fn 𝑤 ∧ ∪ ran 𝑘 ⊆ dom 𝐴 ) → ∀ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ⊆ dom 𝐴 ) |
| 154 | 153 | r19.21bi | ⊢ ( ( ( Fun 𝐴 ∧ 𝑘 Fn 𝑤 ∧ ∪ ran 𝑘 ⊆ dom 𝐴 ) ∧ 𝑦 ∈ 𝑤 ) → ( 𝑘 ‘ 𝑦 ) ⊆ dom 𝐴 ) |
| 155 | funimass3 | ⊢ ( ( Fun 𝐴 ∧ ( 𝑘 ‘ 𝑦 ) ⊆ dom 𝐴 ) → ( ( 𝐴 “ ( 𝑘 ‘ 𝑦 ) ) ⊆ 𝑉 ↔ ( 𝑘 ‘ 𝑦 ) ⊆ ( ◡ 𝐴 “ 𝑉 ) ) ) | |
| 156 | 148 154 155 | syl2anc | ⊢ ( ( ( Fun 𝐴 ∧ 𝑘 Fn 𝑤 ∧ ∪ ran 𝑘 ⊆ dom 𝐴 ) ∧ 𝑦 ∈ 𝑤 ) → ( ( 𝐴 “ ( 𝑘 ‘ 𝑦 ) ) ⊆ 𝑉 ↔ ( 𝑘 ‘ 𝑦 ) ⊆ ( ◡ 𝐴 “ 𝑉 ) ) ) |
| 157 | 156 | ralbidva | ⊢ ( ( Fun 𝐴 ∧ 𝑘 Fn 𝑤 ∧ ∪ ran 𝑘 ⊆ dom 𝐴 ) → ( ∀ 𝑦 ∈ 𝑤 ( 𝐴 “ ( 𝑘 ‘ 𝑦 ) ) ⊆ 𝑉 ↔ ∀ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ⊆ ( ◡ 𝐴 “ 𝑉 ) ) ) |
| 158 | iunss | ⊢ ( ∪ 𝑦 ∈ 𝑤 ( 𝐴 “ ( 𝑘 ‘ 𝑦 ) ) ⊆ 𝑉 ↔ ∀ 𝑦 ∈ 𝑤 ( 𝐴 “ ( 𝑘 ‘ 𝑦 ) ) ⊆ 𝑉 ) | |
| 159 | iunss | ⊢ ( ∪ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ⊆ ( ◡ 𝐴 “ 𝑉 ) ↔ ∀ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ⊆ ( ◡ 𝐴 “ 𝑉 ) ) | |
| 160 | 157 158 159 | 3bitr4g | ⊢ ( ( Fun 𝐴 ∧ 𝑘 Fn 𝑤 ∧ ∪ ran 𝑘 ⊆ dom 𝐴 ) → ( ∪ 𝑦 ∈ 𝑤 ( 𝐴 “ ( 𝑘 ‘ 𝑦 ) ) ⊆ 𝑉 ↔ ∪ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ⊆ ( ◡ 𝐴 “ 𝑉 ) ) ) |
| 161 | 144 145 147 160 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ( ∪ 𝑦 ∈ 𝑤 ( 𝐴 “ ( 𝑘 ‘ 𝑦 ) ) ⊆ 𝑉 ↔ ∪ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ⊆ ( ◡ 𝐴 “ 𝑉 ) ) ) |
| 162 | 143 161 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ∪ 𝑦 ∈ 𝑤 ( 𝐴 “ ( 𝑘 ‘ 𝑦 ) ) ⊆ 𝑉 ) |
| 163 | 142 162 | eqsstrrd | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ( 𝐴 “ ∪ ran 𝑘 ) ⊆ 𝑉 ) |
| 164 | 138 139 163 | elrabd | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → 𝐴 ∈ { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } ) |
| 165 | imaeq1 | ⊢ ( 𝑏 = 𝐵 → ( 𝑏 “ 𝐾 ) = ( 𝐵 “ 𝐾 ) ) | |
| 166 | 165 | sseq1d | ⊢ ( 𝑏 = 𝐵 → ( ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ↔ ( 𝐵 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) |
| 167 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → 𝐵 ∈ ( 𝑅 Cn 𝑆 ) ) |
| 168 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ) | |
| 169 | uniiun | ⊢ ∪ 𝑤 = ∪ 𝑦 ∈ 𝑤 𝑦 | |
| 170 | 168 169 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ( 𝐵 “ 𝐾 ) = ∪ 𝑦 ∈ 𝑤 𝑦 ) |
| 171 | simpl | ⊢ ( ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) → 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) | |
| 172 | 171 | ralimi | ⊢ ( ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) → ∀ 𝑦 ∈ 𝑤 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) |
| 173 | ss2iun | ⊢ ( ∀ 𝑦 ∈ 𝑤 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) → ∪ 𝑦 ∈ 𝑤 𝑦 ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) | |
| 174 | 114 172 173 | 3syl | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ∪ 𝑦 ∈ 𝑤 𝑦 ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) |
| 175 | 170 174 | eqsstrd | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ( 𝐵 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) |
| 176 | 166 167 175 | elrabd | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → 𝐵 ∈ { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) |
| 177 | 164 176 | opelxpd | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → 〈 𝐴 , 𝐵 〉 ∈ ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ) |
| 178 | imaeq1 | ⊢ ( 𝑎 = 𝑢 → ( 𝑎 “ ∪ ran 𝑘 ) = ( 𝑢 “ ∪ ran 𝑘 ) ) | |
| 179 | 178 | sseq1d | ⊢ ( 𝑎 = 𝑢 → ( ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 ↔ ( 𝑢 “ ∪ ran 𝑘 ) ⊆ 𝑉 ) ) |
| 180 | 179 | elrab | ⊢ ( 𝑢 ∈ { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } ↔ ( 𝑢 ∈ ( 𝑆 Cn 𝑇 ) ∧ ( 𝑢 “ ∪ ran 𝑘 ) ⊆ 𝑉 ) ) |
| 181 | imaeq1 | ⊢ ( 𝑏 = 𝑣 → ( 𝑏 “ 𝐾 ) = ( 𝑣 “ 𝐾 ) ) | |
| 182 | 181 | sseq1d | ⊢ ( 𝑏 = 𝑣 → ( ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ↔ ( 𝑣 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) |
| 183 | 182 | elrab | ⊢ ( 𝑣 ∈ { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ↔ ( 𝑣 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑣 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) |
| 184 | 180 183 | anbi12i | ⊢ ( ( 𝑢 ∈ { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } ∧ 𝑣 ∈ { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ↔ ( ( 𝑢 ∈ ( 𝑆 Cn 𝑇 ) ∧ ( 𝑢 “ ∪ ran 𝑘 ) ⊆ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑣 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) ) |
| 185 | simprll | ⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) ∧ ( ( 𝑢 ∈ ( 𝑆 Cn 𝑇 ) ∧ ( 𝑢 “ ∪ ran 𝑘 ) ⊆ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑣 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) ) → 𝑢 ∈ ( 𝑆 Cn 𝑇 ) ) | |
| 186 | simprrl | ⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) ∧ ( ( 𝑢 ∈ ( 𝑆 Cn 𝑇 ) ∧ ( 𝑢 “ ∪ ran 𝑘 ) ⊆ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑣 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) ) → 𝑣 ∈ ( 𝑅 Cn 𝑆 ) ) | |
| 187 | coeq1 | ⊢ ( 𝑓 = 𝑢 → ( 𝑓 ∘ 𝑔 ) = ( 𝑢 ∘ 𝑔 ) ) | |
| 188 | coeq2 | ⊢ ( 𝑔 = 𝑣 → ( 𝑢 ∘ 𝑔 ) = ( 𝑢 ∘ 𝑣 ) ) | |
| 189 | vex | ⊢ 𝑢 ∈ V | |
| 190 | vex | ⊢ 𝑣 ∈ V | |
| 191 | 189 190 | coex | ⊢ ( 𝑢 ∘ 𝑣 ) ∈ V |
| 192 | 187 188 1 191 | ovmpo | ⊢ ( ( 𝑢 ∈ ( 𝑆 Cn 𝑇 ) ∧ 𝑣 ∈ ( 𝑅 Cn 𝑆 ) ) → ( 𝑢 𝐹 𝑣 ) = ( 𝑢 ∘ 𝑣 ) ) |
| 193 | 185 186 192 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) ∧ ( ( 𝑢 ∈ ( 𝑆 Cn 𝑇 ) ∧ ( 𝑢 “ ∪ ran 𝑘 ) ⊆ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑣 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) ) → ( 𝑢 𝐹 𝑣 ) = ( 𝑢 ∘ 𝑣 ) ) |
| 194 | imaeq1 | ⊢ ( ℎ = ( 𝑢 ∘ 𝑣 ) → ( ℎ “ 𝐾 ) = ( ( 𝑢 ∘ 𝑣 ) “ 𝐾 ) ) | |
| 195 | 194 | sseq1d | ⊢ ( ℎ = ( 𝑢 ∘ 𝑣 ) → ( ( ℎ “ 𝐾 ) ⊆ 𝑉 ↔ ( ( 𝑢 ∘ 𝑣 ) “ 𝐾 ) ⊆ 𝑉 ) ) |
| 196 | cnco | ⊢ ( ( 𝑣 ∈ ( 𝑅 Cn 𝑆 ) ∧ 𝑢 ∈ ( 𝑆 Cn 𝑇 ) ) → ( 𝑢 ∘ 𝑣 ) ∈ ( 𝑅 Cn 𝑇 ) ) | |
| 197 | 186 185 196 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) ∧ ( ( 𝑢 ∈ ( 𝑆 Cn 𝑇 ) ∧ ( 𝑢 “ ∪ ran 𝑘 ) ⊆ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑣 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) ) → ( 𝑢 ∘ 𝑣 ) ∈ ( 𝑅 Cn 𝑇 ) ) |
| 198 | imaco | ⊢ ( ( 𝑢 ∘ 𝑣 ) “ 𝐾 ) = ( 𝑢 “ ( 𝑣 “ 𝐾 ) ) | |
| 199 | simprrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) ∧ ( ( 𝑢 ∈ ( 𝑆 Cn 𝑇 ) ∧ ( 𝑢 “ ∪ ran 𝑘 ) ⊆ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑣 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) ) → ( 𝑣 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) | |
| 200 | 17 | ntrss2 | ⊢ ( ( 𝑆 ∈ Top ∧ ( 𝑘 ‘ 𝑦 ) ⊆ ∪ 𝑆 ) → ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ⊆ ( 𝑘 ‘ 𝑦 ) ) |
| 201 | 200 | ex | ⊢ ( 𝑆 ∈ Top → ( ( 𝑘 ‘ 𝑦 ) ⊆ ∪ 𝑆 → ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ⊆ ( 𝑘 ‘ 𝑦 ) ) ) |
| 202 | 201 | ralimdv | ⊢ ( 𝑆 ∈ Top → ( ∀ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ⊆ ∪ 𝑆 → ∀ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ⊆ ( 𝑘 ‘ 𝑦 ) ) ) |
| 203 | 90 127 202 | sylc | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ∀ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ⊆ ( 𝑘 ‘ 𝑦 ) ) |
| 204 | ss2iun | ⊢ ( ∀ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ⊆ ( 𝑘 ‘ 𝑦 ) → ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ⊆ ∪ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ) | |
| 205 | 203 204 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ⊆ ∪ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ) |
| 206 | 205 110 | sseqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ⊆ ∪ ran 𝑘 ) |
| 207 | 206 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) ∧ ( ( 𝑢 ∈ ( 𝑆 Cn 𝑇 ) ∧ ( 𝑢 “ ∪ ran 𝑘 ) ⊆ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑣 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) ) → ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ⊆ ∪ ran 𝑘 ) |
| 208 | 199 207 | sstrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) ∧ ( ( 𝑢 ∈ ( 𝑆 Cn 𝑇 ) ∧ ( 𝑢 “ ∪ ran 𝑘 ) ⊆ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑣 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) ) → ( 𝑣 “ 𝐾 ) ⊆ ∪ ran 𝑘 ) |
| 209 | imass2 | ⊢ ( ( 𝑣 “ 𝐾 ) ⊆ ∪ ran 𝑘 → ( 𝑢 “ ( 𝑣 “ 𝐾 ) ) ⊆ ( 𝑢 “ ∪ ran 𝑘 ) ) | |
| 210 | 208 209 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) ∧ ( ( 𝑢 ∈ ( 𝑆 Cn 𝑇 ) ∧ ( 𝑢 “ ∪ ran 𝑘 ) ⊆ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑣 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) ) → ( 𝑢 “ ( 𝑣 “ 𝐾 ) ) ⊆ ( 𝑢 “ ∪ ran 𝑘 ) ) |
| 211 | simprlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) ∧ ( ( 𝑢 ∈ ( 𝑆 Cn 𝑇 ) ∧ ( 𝑢 “ ∪ ran 𝑘 ) ⊆ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑣 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) ) → ( 𝑢 “ ∪ ran 𝑘 ) ⊆ 𝑉 ) | |
| 212 | 210 211 | sstrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) ∧ ( ( 𝑢 ∈ ( 𝑆 Cn 𝑇 ) ∧ ( 𝑢 “ ∪ ran 𝑘 ) ⊆ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑣 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) ) → ( 𝑢 “ ( 𝑣 “ 𝐾 ) ) ⊆ 𝑉 ) |
| 213 | 198 212 | eqsstrid | ⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) ∧ ( ( 𝑢 ∈ ( 𝑆 Cn 𝑇 ) ∧ ( 𝑢 “ ∪ ran 𝑘 ) ⊆ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑣 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) ) → ( ( 𝑢 ∘ 𝑣 ) “ 𝐾 ) ⊆ 𝑉 ) |
| 214 | 195 197 213 | elrabd | ⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) ∧ ( ( 𝑢 ∈ ( 𝑆 Cn 𝑇 ) ∧ ( 𝑢 “ ∪ ran 𝑘 ) ⊆ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑣 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) ) → ( 𝑢 ∘ 𝑣 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) |
| 215 | 193 214 | eqeltrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) ∧ ( ( 𝑢 ∈ ( 𝑆 Cn 𝑇 ) ∧ ( 𝑢 “ ∪ ran 𝑘 ) ⊆ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑣 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) ) → ( 𝑢 𝐹 𝑣 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) |
| 216 | 184 215 | sylan2b | ⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) ∧ ( 𝑢 ∈ { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } ∧ 𝑣 ∈ { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ) → ( 𝑢 𝐹 𝑣 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) |
| 217 | 216 | ralrimivva | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ∀ 𝑢 ∈ { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } ∀ 𝑣 ∈ { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ( 𝑢 𝐹 𝑣 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) |
| 218 | 1 | mpofun | ⊢ Fun 𝐹 |
| 219 | ssrab2 | ⊢ { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } ⊆ ( 𝑆 Cn 𝑇 ) | |
| 220 | ssrab2 | ⊢ { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ⊆ ( 𝑅 Cn 𝑆 ) | |
| 221 | xpss12 | ⊢ ( ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } ⊆ ( 𝑆 Cn 𝑇 ) ∧ { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ⊆ ( 𝑅 Cn 𝑆 ) ) → ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ⊆ ( ( 𝑆 Cn 𝑇 ) × ( 𝑅 Cn 𝑆 ) ) ) | |
| 222 | 219 220 221 | mp2an | ⊢ ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ⊆ ( ( 𝑆 Cn 𝑇 ) × ( 𝑅 Cn 𝑆 ) ) |
| 223 | vex | ⊢ 𝑓 ∈ V | |
| 224 | vex | ⊢ 𝑔 ∈ V | |
| 225 | 223 224 | coex | ⊢ ( 𝑓 ∘ 𝑔 ) ∈ V |
| 226 | 1 225 | dmmpo | ⊢ dom 𝐹 = ( ( 𝑆 Cn 𝑇 ) × ( 𝑅 Cn 𝑆 ) ) |
| 227 | 222 226 | sseqtrri | ⊢ ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ⊆ dom 𝐹 |
| 228 | funimassov | ⊢ ( ( Fun 𝐹 ∧ ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ⊆ dom 𝐹 ) → ( ( 𝐹 “ ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ) ⊆ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ↔ ∀ 𝑢 ∈ { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } ∀ 𝑣 ∈ { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ( 𝑢 𝐹 𝑣 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) ) | |
| 229 | 218 227 228 | mp2an | ⊢ ( ( 𝐹 “ ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ) ⊆ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ↔ ∀ 𝑢 ∈ { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } ∀ 𝑣 ∈ { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ( 𝑢 𝐹 𝑣 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) |
| 230 | 217 229 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ( 𝐹 “ ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ) ⊆ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) |
| 231 | funimass3 | ⊢ ( ( Fun 𝐹 ∧ ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ⊆ dom 𝐹 ) → ( ( 𝐹 “ ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ) ⊆ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ↔ ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) ) ) | |
| 232 | 218 227 231 | mp2an | ⊢ ( ( 𝐹 “ ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ) ⊆ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ↔ ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) ) |
| 233 | 230 232 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) ) |
| 234 | eleq2 | ⊢ ( 𝑧 = ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) → ( 〈 𝐴 , 𝐵 〉 ∈ 𝑧 ↔ 〈 𝐴 , 𝐵 〉 ∈ ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ) ) | |
| 235 | sseq1 | ⊢ ( 𝑧 = ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) → ( 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) ↔ ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) ) ) | |
| 236 | 234 235 | anbi12d | ⊢ ( 𝑧 = ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) → ( ( 〈 𝐴 , 𝐵 〉 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) ) ↔ ( 〈 𝐴 , 𝐵 〉 ∈ ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ∧ ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) ) ) ) |
| 237 | 236 | rspcev | ⊢ ( ( ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ∧ ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) ) ) → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 〈 𝐴 , 𝐵 〉 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) ) ) |
| 238 | 136 177 233 237 | syl12anc | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 〈 𝐴 , 𝐵 〉 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) ) ) |
| 239 | 238 | expr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ) → ( ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 〈 𝐴 , 𝐵 〉 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) ) ) ) |
| 240 | 239 | exlimdv | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ) → ( ∃ 𝑘 ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 〈 𝐴 , 𝐵 〉 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) ) ) ) |
| 241 | 89 240 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ∪ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) = ∪ 𝑤 ) → ( ∃ 𝑘 ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 〈 𝐴 , 𝐵 〉 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) ) ) ) |
| 242 | 241 | expimpd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) → ( ( ∪ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) = ∪ 𝑤 ∧ ∃ 𝑘 ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 〈 𝐴 , 𝐵 〉 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) ) ) ) |
| 243 | 242 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ( ∪ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) = ∪ 𝑤 ∧ ∃ 𝑘 ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 〈 𝐴 , 𝐵 〉 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) ) ) ) |
| 244 | 86 243 | mpd | ⊢ ( 𝜑 → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 〈 𝐴 , 𝐵 〉 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) ) ) |