This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite union of compact sets is compact. (Contributed by Mario Carneiro, 19-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fiuncmp.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | fiuncmp | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) → ( 𝐽 ↾t ∪ 𝑥 ∈ 𝐴 𝐵 ) ∈ Comp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fiuncmp.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | ssid | ⊢ 𝐴 ⊆ 𝐴 | |
| 3 | simp2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) → 𝐴 ∈ Fin ) | |
| 4 | sseq1 | ⊢ ( 𝑡 = ∅ → ( 𝑡 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴 ) ) | |
| 5 | iuneq1 | ⊢ ( 𝑡 = ∅ → ∪ 𝑥 ∈ 𝑡 𝐵 = ∪ 𝑥 ∈ ∅ 𝐵 ) | |
| 6 | 0iun | ⊢ ∪ 𝑥 ∈ ∅ 𝐵 = ∅ | |
| 7 | 5 6 | eqtrdi | ⊢ ( 𝑡 = ∅ → ∪ 𝑥 ∈ 𝑡 𝐵 = ∅ ) |
| 8 | 7 | oveq2d | ⊢ ( 𝑡 = ∅ → ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑡 𝐵 ) = ( 𝐽 ↾t ∅ ) ) |
| 9 | 8 | eleq1d | ⊢ ( 𝑡 = ∅ → ( ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑡 𝐵 ) ∈ Comp ↔ ( 𝐽 ↾t ∅ ) ∈ Comp ) ) |
| 10 | 4 9 | imbi12d | ⊢ ( 𝑡 = ∅ → ( ( 𝑡 ⊆ 𝐴 → ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑡 𝐵 ) ∈ Comp ) ↔ ( ∅ ⊆ 𝐴 → ( 𝐽 ↾t ∅ ) ∈ Comp ) ) ) |
| 11 | 10 | imbi2d | ⊢ ( 𝑡 = ∅ → ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) → ( 𝑡 ⊆ 𝐴 → ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑡 𝐵 ) ∈ Comp ) ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) → ( ∅ ⊆ 𝐴 → ( 𝐽 ↾t ∅ ) ∈ Comp ) ) ) ) |
| 12 | sseq1 | ⊢ ( 𝑡 = 𝑦 → ( 𝑡 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴 ) ) | |
| 13 | iuneq1 | ⊢ ( 𝑡 = 𝑦 → ∪ 𝑥 ∈ 𝑡 𝐵 = ∪ 𝑥 ∈ 𝑦 𝐵 ) | |
| 14 | 13 | oveq2d | ⊢ ( 𝑡 = 𝑦 → ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑡 𝐵 ) = ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ) |
| 15 | 14 | eleq1d | ⊢ ( 𝑡 = 𝑦 → ( ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑡 𝐵 ) ∈ Comp ↔ ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp ) ) |
| 16 | 12 15 | imbi12d | ⊢ ( 𝑡 = 𝑦 → ( ( 𝑡 ⊆ 𝐴 → ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑡 𝐵 ) ∈ Comp ) ↔ ( 𝑦 ⊆ 𝐴 → ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp ) ) ) |
| 17 | 16 | imbi2d | ⊢ ( 𝑡 = 𝑦 → ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) → ( 𝑡 ⊆ 𝐴 → ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑡 𝐵 ) ∈ Comp ) ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) → ( 𝑦 ⊆ 𝐴 → ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp ) ) ) ) |
| 18 | sseq1 | ⊢ ( 𝑡 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑡 ⊆ 𝐴 ↔ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) | |
| 19 | iuneq1 | ⊢ ( 𝑡 = ( 𝑦 ∪ { 𝑧 } ) → ∪ 𝑥 ∈ 𝑡 𝐵 = ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) | |
| 20 | 19 | oveq2d | ⊢ ( 𝑡 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑡 𝐵 ) = ( 𝐽 ↾t ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) |
| 21 | 20 | eleq1d | ⊢ ( 𝑡 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑡 𝐵 ) ∈ Comp ↔ ( 𝐽 ↾t ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ∈ Comp ) ) |
| 22 | 18 21 | imbi12d | ⊢ ( 𝑡 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑡 ⊆ 𝐴 → ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑡 𝐵 ) ∈ Comp ) ↔ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( 𝐽 ↾t ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ∈ Comp ) ) ) |
| 23 | 22 | imbi2d | ⊢ ( 𝑡 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) → ( 𝑡 ⊆ 𝐴 → ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑡 𝐵 ) ∈ Comp ) ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( 𝐽 ↾t ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ∈ Comp ) ) ) ) |
| 24 | sseq1 | ⊢ ( 𝑡 = 𝐴 → ( 𝑡 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴 ) ) | |
| 25 | iuneq1 | ⊢ ( 𝑡 = 𝐴 → ∪ 𝑥 ∈ 𝑡 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐵 ) | |
| 26 | 25 | oveq2d | ⊢ ( 𝑡 = 𝐴 → ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑡 𝐵 ) = ( 𝐽 ↾t ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
| 27 | 26 | eleq1d | ⊢ ( 𝑡 = 𝐴 → ( ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑡 𝐵 ) ∈ Comp ↔ ( 𝐽 ↾t ∪ 𝑥 ∈ 𝐴 𝐵 ) ∈ Comp ) ) |
| 28 | 24 27 | imbi12d | ⊢ ( 𝑡 = 𝐴 → ( ( 𝑡 ⊆ 𝐴 → ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑡 𝐵 ) ∈ Comp ) ↔ ( 𝐴 ⊆ 𝐴 → ( 𝐽 ↾t ∪ 𝑥 ∈ 𝐴 𝐵 ) ∈ Comp ) ) ) |
| 29 | 28 | imbi2d | ⊢ ( 𝑡 = 𝐴 → ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) → ( 𝑡 ⊆ 𝐴 → ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑡 𝐵 ) ∈ Comp ) ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) → ( 𝐴 ⊆ 𝐴 → ( 𝐽 ↾t ∪ 𝑥 ∈ 𝐴 𝐵 ) ∈ Comp ) ) ) ) |
| 30 | rest0 | ⊢ ( 𝐽 ∈ Top → ( 𝐽 ↾t ∅ ) = { ∅ } ) | |
| 31 | 0cmp | ⊢ { ∅ } ∈ Comp | |
| 32 | 30 31 | eqeltrdi | ⊢ ( 𝐽 ∈ Top → ( 𝐽 ↾t ∅ ) ∈ Comp ) |
| 33 | 32 | 3ad2ant1 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) → ( 𝐽 ↾t ∅ ) ∈ Comp ) |
| 34 | 33 | a1d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) → ( ∅ ⊆ 𝐴 → ( 𝐽 ↾t ∅ ) ∈ Comp ) ) |
| 35 | ssun1 | ⊢ 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) | |
| 36 | id | ⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) | |
| 37 | 35 36 | sstrid | ⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → 𝑦 ⊆ 𝐴 ) |
| 38 | 37 | imim1i | ⊢ ( ( 𝑦 ⊆ 𝐴 → ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp ) ) |
| 39 | simpl1 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp ) ) → 𝐽 ∈ Top ) | |
| 40 | iunxun | ⊢ ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 = ( ∪ 𝑥 ∈ 𝑦 𝐵 ∪ ∪ 𝑥 ∈ { 𝑧 } 𝐵 ) | |
| 41 | simprr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp ) ) → ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp ) | |
| 42 | cmptop | ⊢ ( ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp → ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Top ) | |
| 43 | restrcl | ⊢ ( ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Top → ( 𝐽 ∈ V ∧ ∪ 𝑥 ∈ 𝑦 𝐵 ∈ V ) ) | |
| 44 | 43 | simprd | ⊢ ( ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Top → ∪ 𝑥 ∈ 𝑦 𝐵 ∈ V ) |
| 45 | 41 42 44 | 3syl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp ) ) → ∪ 𝑥 ∈ 𝑦 𝐵 ∈ V ) |
| 46 | nfcv | ⊢ Ⅎ 𝑡 𝐵 | |
| 47 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑡 / 𝑥 ⦌ 𝐵 | |
| 48 | csbeq1a | ⊢ ( 𝑥 = 𝑡 → 𝐵 = ⦋ 𝑡 / 𝑥 ⦌ 𝐵 ) | |
| 49 | 46 47 48 | cbviun | ⊢ ∪ 𝑥 ∈ { 𝑧 } 𝐵 = ∪ 𝑡 ∈ { 𝑧 } ⦋ 𝑡 / 𝑥 ⦌ 𝐵 |
| 50 | vex | ⊢ 𝑧 ∈ V | |
| 51 | csbeq1 | ⊢ ( 𝑡 = 𝑧 → ⦋ 𝑡 / 𝑥 ⦌ 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) | |
| 52 | 50 51 | iunxsn | ⊢ ∪ 𝑡 ∈ { 𝑧 } ⦋ 𝑡 / 𝑥 ⦌ 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 |
| 53 | 49 52 | eqtri | ⊢ ∪ 𝑥 ∈ { 𝑧 } 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 |
| 54 | 51 | oveq2d | ⊢ ( 𝑡 = 𝑧 → ( 𝐽 ↾t ⦋ 𝑡 / 𝑥 ⦌ 𝐵 ) = ( 𝐽 ↾t ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) |
| 55 | 54 | eleq1d | ⊢ ( 𝑡 = 𝑧 → ( ( 𝐽 ↾t ⦋ 𝑡 / 𝑥 ⦌ 𝐵 ) ∈ Comp ↔ ( 𝐽 ↾t ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ∈ Comp ) ) |
| 56 | simpl3 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) | |
| 57 | nfv | ⊢ Ⅎ 𝑡 ( 𝐽 ↾t 𝐵 ) ∈ Comp | |
| 58 | nfcv | ⊢ Ⅎ 𝑥 𝐽 | |
| 59 | nfcv | ⊢ Ⅎ 𝑥 ↾t | |
| 60 | 58 59 47 | nfov | ⊢ Ⅎ 𝑥 ( 𝐽 ↾t ⦋ 𝑡 / 𝑥 ⦌ 𝐵 ) |
| 61 | 60 | nfel1 | ⊢ Ⅎ 𝑥 ( 𝐽 ↾t ⦋ 𝑡 / 𝑥 ⦌ 𝐵 ) ∈ Comp |
| 62 | 48 | oveq2d | ⊢ ( 𝑥 = 𝑡 → ( 𝐽 ↾t 𝐵 ) = ( 𝐽 ↾t ⦋ 𝑡 / 𝑥 ⦌ 𝐵 ) ) |
| 63 | 62 | eleq1d | ⊢ ( 𝑥 = 𝑡 → ( ( 𝐽 ↾t 𝐵 ) ∈ Comp ↔ ( 𝐽 ↾t ⦋ 𝑡 / 𝑥 ⦌ 𝐵 ) ∈ Comp ) ) |
| 64 | 57 61 63 | cbvralw | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ↔ ∀ 𝑡 ∈ 𝐴 ( 𝐽 ↾t ⦋ 𝑡 / 𝑥 ⦌ 𝐵 ) ∈ Comp ) |
| 65 | 56 64 | sylib | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp ) ) → ∀ 𝑡 ∈ 𝐴 ( 𝐽 ↾t ⦋ 𝑡 / 𝑥 ⦌ 𝐵 ) ∈ Comp ) |
| 66 | ssun2 | ⊢ { 𝑧 } ⊆ ( 𝑦 ∪ { 𝑧 } ) | |
| 67 | simprl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp ) ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) | |
| 68 | 66 67 | sstrid | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp ) ) → { 𝑧 } ⊆ 𝐴 ) |
| 69 | 50 | snss | ⊢ ( 𝑧 ∈ 𝐴 ↔ { 𝑧 } ⊆ 𝐴 ) |
| 70 | 68 69 | sylibr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp ) ) → 𝑧 ∈ 𝐴 ) |
| 71 | 55 65 70 | rspcdva | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp ) ) → ( 𝐽 ↾t ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ∈ Comp ) |
| 72 | cmptop | ⊢ ( ( 𝐽 ↾t ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ∈ Comp → ( 𝐽 ↾t ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ∈ Top ) | |
| 73 | restrcl | ⊢ ( ( 𝐽 ↾t ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ∈ Top → ( 𝐽 ∈ V ∧ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ V ) ) | |
| 74 | 73 | simprd | ⊢ ( ( 𝐽 ↾t ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ∈ Top → ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ V ) |
| 75 | 71 72 74 | 3syl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp ) ) → ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ V ) |
| 76 | 53 75 | eqeltrid | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp ) ) → ∪ 𝑥 ∈ { 𝑧 } 𝐵 ∈ V ) |
| 77 | unexg | ⊢ ( ( ∪ 𝑥 ∈ 𝑦 𝐵 ∈ V ∧ ∪ 𝑥 ∈ { 𝑧 } 𝐵 ∈ V ) → ( ∪ 𝑥 ∈ 𝑦 𝐵 ∪ ∪ 𝑥 ∈ { 𝑧 } 𝐵 ) ∈ V ) | |
| 78 | 45 76 77 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp ) ) → ( ∪ 𝑥 ∈ 𝑦 𝐵 ∪ ∪ 𝑥 ∈ { 𝑧 } 𝐵 ) ∈ V ) |
| 79 | 40 78 | eqeltrid | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp ) ) → ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ V ) |
| 80 | resttop | ⊢ ( ( 𝐽 ∈ Top ∧ ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ V ) → ( 𝐽 ↾t ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ∈ Top ) | |
| 81 | 39 79 80 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp ) ) → ( 𝐽 ↾t ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ∈ Top ) |
| 82 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 83 | 82 | restin | ⊢ ( ( 𝐽 ∈ Top ∧ ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ V ) → ( 𝐽 ↾t ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) = ( 𝐽 ↾t ( ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∩ ∪ 𝐽 ) ) ) |
| 84 | 39 79 83 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp ) ) → ( 𝐽 ↾t ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) = ( 𝐽 ↾t ( ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∩ ∪ 𝐽 ) ) ) |
| 85 | 84 | unieqd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp ) ) → ∪ ( 𝐽 ↾t ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) = ∪ ( 𝐽 ↾t ( ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∩ ∪ 𝐽 ) ) ) |
| 86 | inss2 | ⊢ ( ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∩ ∪ 𝐽 ) ⊆ ∪ 𝐽 | |
| 87 | 86 1 | sseqtrri | ⊢ ( ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∩ ∪ 𝐽 ) ⊆ 𝑋 |
| 88 | 1 | restuni | ⊢ ( ( 𝐽 ∈ Top ∧ ( ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∩ ∪ 𝐽 ) ⊆ 𝑋 ) → ( ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∩ ∪ 𝐽 ) = ∪ ( 𝐽 ↾t ( ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∩ ∪ 𝐽 ) ) ) |
| 89 | 39 87 88 | sylancl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp ) ) → ( ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∩ ∪ 𝐽 ) = ∪ ( 𝐽 ↾t ( ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∩ ∪ 𝐽 ) ) ) |
| 90 | 85 89 | eqtr4d | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp ) ) → ∪ ( 𝐽 ↾t ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) = ( ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∩ ∪ 𝐽 ) ) |
| 91 | 53 | uneq2i | ⊢ ( ∪ 𝑥 ∈ 𝑦 𝐵 ∪ ∪ 𝑥 ∈ { 𝑧 } 𝐵 ) = ( ∪ 𝑥 ∈ 𝑦 𝐵 ∪ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
| 92 | 40 91 | eqtri | ⊢ ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 = ( ∪ 𝑥 ∈ 𝑦 𝐵 ∪ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
| 93 | 92 | ineq1i | ⊢ ( ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∩ ∪ 𝐽 ) = ( ( ∪ 𝑥 ∈ 𝑦 𝐵 ∪ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ∩ ∪ 𝐽 ) |
| 94 | indir | ⊢ ( ( ∪ 𝑥 ∈ 𝑦 𝐵 ∪ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ∩ ∪ 𝐽 ) = ( ( ∪ 𝑥 ∈ 𝑦 𝐵 ∩ ∪ 𝐽 ) ∪ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ ∪ 𝐽 ) ) | |
| 95 | 93 94 | eqtri | ⊢ ( ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∩ ∪ 𝐽 ) = ( ( ∪ 𝑥 ∈ 𝑦 𝐵 ∩ ∪ 𝐽 ) ∪ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ ∪ 𝐽 ) ) |
| 96 | 90 95 | eqtrdi | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp ) ) → ∪ ( 𝐽 ↾t ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) = ( ( ∪ 𝑥 ∈ 𝑦 𝐵 ∩ ∪ 𝐽 ) ∪ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ ∪ 𝐽 ) ) ) |
| 97 | inss1 | ⊢ ( ∪ 𝑥 ∈ 𝑦 𝐵 ∩ ∪ 𝐽 ) ⊆ ∪ 𝑥 ∈ 𝑦 𝐵 | |
| 98 | ssun1 | ⊢ ∪ 𝑥 ∈ 𝑦 𝐵 ⊆ ( ∪ 𝑥 ∈ 𝑦 𝐵 ∪ ∪ 𝑥 ∈ { 𝑧 } 𝐵 ) | |
| 99 | 98 40 | sseqtrri | ⊢ ∪ 𝑥 ∈ 𝑦 𝐵 ⊆ ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 |
| 100 | 97 99 | sstri | ⊢ ( ∪ 𝑥 ∈ 𝑦 𝐵 ∩ ∪ 𝐽 ) ⊆ ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 |
| 101 | 100 | a1i | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp ) ) → ( ∪ 𝑥 ∈ 𝑦 𝐵 ∩ ∪ 𝐽 ) ⊆ ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) |
| 102 | restabs | ⊢ ( ( 𝐽 ∈ Top ∧ ( ∪ 𝑥 ∈ 𝑦 𝐵 ∩ ∪ 𝐽 ) ⊆ ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∧ ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ V ) → ( ( 𝐽 ↾t ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ↾t ( ∪ 𝑥 ∈ 𝑦 𝐵 ∩ ∪ 𝐽 ) ) = ( 𝐽 ↾t ( ∪ 𝑥 ∈ 𝑦 𝐵 ∩ ∪ 𝐽 ) ) ) | |
| 103 | 39 101 79 102 | syl3anc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp ) ) → ( ( 𝐽 ↾t ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ↾t ( ∪ 𝑥 ∈ 𝑦 𝐵 ∩ ∪ 𝐽 ) ) = ( 𝐽 ↾t ( ∪ 𝑥 ∈ 𝑦 𝐵 ∩ ∪ 𝐽 ) ) ) |
| 104 | 82 | restin | ⊢ ( ( 𝐽 ∈ Top ∧ ∪ 𝑥 ∈ 𝑦 𝐵 ∈ V ) → ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) = ( 𝐽 ↾t ( ∪ 𝑥 ∈ 𝑦 𝐵 ∩ ∪ 𝐽 ) ) ) |
| 105 | 39 45 104 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp ) ) → ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) = ( 𝐽 ↾t ( ∪ 𝑥 ∈ 𝑦 𝐵 ∩ ∪ 𝐽 ) ) ) |
| 106 | 103 105 | eqtr4d | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp ) ) → ( ( 𝐽 ↾t ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ↾t ( ∪ 𝑥 ∈ 𝑦 𝐵 ∩ ∪ 𝐽 ) ) = ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ) |
| 107 | 106 41 | eqeltrd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp ) ) → ( ( 𝐽 ↾t ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ↾t ( ∪ 𝑥 ∈ 𝑦 𝐵 ∩ ∪ 𝐽 ) ) ∈ Comp ) |
| 108 | inss1 | ⊢ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ ∪ 𝐽 ) ⊆ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 | |
| 109 | ssun2 | ⊢ ∪ 𝑥 ∈ { 𝑧 } 𝐵 ⊆ ( ∪ 𝑥 ∈ 𝑦 𝐵 ∪ ∪ 𝑥 ∈ { 𝑧 } 𝐵 ) | |
| 110 | 109 40 | sseqtrri | ⊢ ∪ 𝑥 ∈ { 𝑧 } 𝐵 ⊆ ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 |
| 111 | 53 110 | eqsstrri | ⊢ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ⊆ ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 |
| 112 | 108 111 | sstri | ⊢ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ ∪ 𝐽 ) ⊆ ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 |
| 113 | 112 | a1i | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp ) ) → ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ ∪ 𝐽 ) ⊆ ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) |
| 114 | restabs | ⊢ ( ( 𝐽 ∈ Top ∧ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ ∪ 𝐽 ) ⊆ ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∧ ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ V ) → ( ( 𝐽 ↾t ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ↾t ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ ∪ 𝐽 ) ) = ( 𝐽 ↾t ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ ∪ 𝐽 ) ) ) | |
| 115 | 39 113 79 114 | syl3anc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp ) ) → ( ( 𝐽 ↾t ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ↾t ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ ∪ 𝐽 ) ) = ( 𝐽 ↾t ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ ∪ 𝐽 ) ) ) |
| 116 | 82 | restin | ⊢ ( ( 𝐽 ∈ Top ∧ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ V ) → ( 𝐽 ↾t ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) = ( 𝐽 ↾t ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ ∪ 𝐽 ) ) ) |
| 117 | 39 75 116 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp ) ) → ( 𝐽 ↾t ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) = ( 𝐽 ↾t ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ ∪ 𝐽 ) ) ) |
| 118 | 115 117 | eqtr4d | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp ) ) → ( ( 𝐽 ↾t ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ↾t ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ ∪ 𝐽 ) ) = ( 𝐽 ↾t ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) |
| 119 | 118 71 | eqeltrd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp ) ) → ( ( 𝐽 ↾t ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ↾t ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ ∪ 𝐽 ) ) ∈ Comp ) |
| 120 | eqid | ⊢ ∪ ( 𝐽 ↾t ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) = ∪ ( 𝐽 ↾t ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) | |
| 121 | 120 | uncmp | ⊢ ( ( ( ( 𝐽 ↾t ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ∈ Top ∧ ∪ ( 𝐽 ↾t ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) = ( ( ∪ 𝑥 ∈ 𝑦 𝐵 ∩ ∪ 𝐽 ) ∪ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ ∪ 𝐽 ) ) ) ∧ ( ( ( 𝐽 ↾t ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ↾t ( ∪ 𝑥 ∈ 𝑦 𝐵 ∩ ∪ 𝐽 ) ) ∈ Comp ∧ ( ( 𝐽 ↾t ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ↾t ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∩ ∪ 𝐽 ) ) ∈ Comp ) ) → ( 𝐽 ↾t ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ∈ Comp ) |
| 122 | 81 96 107 119 121 | syl22anc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp ) ) → ( 𝐽 ↾t ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ∈ Comp ) |
| 123 | 122 | exp32 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp → ( 𝐽 ↾t ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ∈ Comp ) ) ) |
| 124 | 123 | a2d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) → ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( 𝐽 ↾t ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ∈ Comp ) ) ) |
| 125 | 38 124 | syl5 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) → ( ( 𝑦 ⊆ 𝐴 → ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( 𝐽 ↾t ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ∈ Comp ) ) ) |
| 126 | 125 | a2i | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) → ( 𝑦 ⊆ 𝐴 → ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp ) ) → ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( 𝐽 ↾t ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ∈ Comp ) ) ) |
| 127 | 126 | a1i | ⊢ ( 𝑦 ∈ Fin → ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) → ( 𝑦 ⊆ 𝐴 → ( 𝐽 ↾t ∪ 𝑥 ∈ 𝑦 𝐵 ) ∈ Comp ) ) → ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( 𝐽 ↾t ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ∈ Comp ) ) ) ) |
| 128 | 11 17 23 29 34 127 | findcard2 | ⊢ ( 𝐴 ∈ Fin → ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) → ( 𝐴 ⊆ 𝐴 → ( 𝐽 ↾t ∪ 𝑥 ∈ 𝐴 𝐵 ) ∈ Comp ) ) ) |
| 129 | 3 128 | mpcom | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) → ( 𝐴 ⊆ 𝐴 → ( 𝐽 ↾t ∪ 𝑥 ∈ 𝐴 𝐵 ) ∈ Comp ) ) |
| 130 | 2 129 | mpi | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐽 ↾t 𝐵 ) ∈ Comp ) → ( 𝐽 ↾t ∪ 𝑥 ∈ 𝐴 𝐵 ) ∈ Comp ) |