This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutation of restricted existential quantifiers. (Contributed by NM, 19-Nov-1995) (Revised by Mario Carneiro, 14-Oct-2016) (Proof shortened by BJ, 26-Aug-2023) (Proof shortened by Wolf Lammen, 8-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rexcom | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralcom | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ) | |
| 2 | ralnex2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) | |
| 3 | ralnex2 | ⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) | |
| 4 | 1 2 3 | 3bitr3i | ⊢ ( ¬ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ¬ ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) |
| 5 | 4 | con4bii | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) |