This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The compact-open topology is a topology. (Contributed by Mario Carneiro, 19-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xkotop | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑆 ↑ko 𝑅 ) ∈ Top ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ∪ 𝑅 = ∪ 𝑅 | |
| 2 | eqid | ⊢ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } = { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } | |
| 3 | eqid | ⊢ ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) = ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) | |
| 4 | 1 2 3 | xkoval | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑆 ↑ko 𝑅 ) = ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
| 5 | fibas | ⊢ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ∈ TopBases | |
| 6 | tgcl | ⊢ ( ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ∈ TopBases → ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ) ∈ Top ) | |
| 7 | 5 6 | ax-mp | ⊢ ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ) ∈ Top |
| 8 | 4 7 | eqeltrdi | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑆 ↑ko 𝑅 ) ∈ Top ) |