This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The indexed union of a subset of a topology is an open set. (Contributed by NM, 5-Oct-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iunopn | ⊢ ( ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiun2g | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) |
| 3 | uniiunlem | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 → ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ↔ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ⊆ 𝐽 ) ) | |
| 4 | 3 | ibi | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ⊆ 𝐽 ) |
| 5 | uniopn | ⊢ ( ( 𝐽 ∈ Top ∧ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ⊆ 𝐽 ) → ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ∈ 𝐽 ) | |
| 6 | 4 5 | sylan2 | ⊢ ( ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) → ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ∈ 𝐽 ) |
| 7 | 2 6 | eqeltrd | ⊢ ( ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) |