This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An open subset of a set is a subset of the set's interior. (Contributed by Jeff Hankins, 31-Aug-2009) (Revised by Mario Carneiro, 11-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | ssntr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆 ) ) → 𝑂 ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | elin | ⊢ ( 𝑂 ∈ ( 𝐽 ∩ 𝒫 𝑆 ) ↔ ( 𝑂 ∈ 𝐽 ∧ 𝑂 ∈ 𝒫 𝑆 ) ) | |
| 3 | elpwg | ⊢ ( 𝑂 ∈ 𝐽 → ( 𝑂 ∈ 𝒫 𝑆 ↔ 𝑂 ⊆ 𝑆 ) ) | |
| 4 | 3 | pm5.32i | ⊢ ( ( 𝑂 ∈ 𝐽 ∧ 𝑂 ∈ 𝒫 𝑆 ) ↔ ( 𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆 ) ) |
| 5 | 2 4 | bitr2i | ⊢ ( ( 𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆 ) ↔ 𝑂 ∈ ( 𝐽 ∩ 𝒫 𝑆 ) ) |
| 6 | elssuni | ⊢ ( 𝑂 ∈ ( 𝐽 ∩ 𝒫 𝑆 ) → 𝑂 ⊆ ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ) | |
| 7 | 5 6 | sylbi | ⊢ ( ( 𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆 ) → 𝑂 ⊆ ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ) |
| 8 | 7 | adantl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆 ) ) → 𝑂 ⊆ ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ) |
| 9 | 1 | ntrval | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ) |
| 10 | 9 | adantr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆 ) ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ) |
| 11 | 8 10 | sseqtrrd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆 ) ) → 𝑂 ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) |