This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Combine cmpcov with ac6sfi to show the existence of a function that indexes the elements that are generating the open cover. (Contributed by Mario Carneiro, 14-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscmp.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| cmpcovf.2 | ⊢ ( 𝑧 = ( 𝑓 ‘ 𝑦 ) → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | cmpcovf | ⊢ ( ( 𝐽 ∈ Comp ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ ∃ 𝑧 ∈ 𝐴 𝜑 ) ) → ∃ 𝑠 ∈ ( 𝒫 𝐽 ∩ Fin ) ( 𝑋 = ∪ 𝑠 ∧ ∃ 𝑓 ( 𝑓 : 𝑠 ⟶ 𝐴 ∧ ∀ 𝑦 ∈ 𝑠 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscmp.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | cmpcovf.2 | ⊢ ( 𝑧 = ( 𝑓 ‘ 𝑦 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | simpl | ⊢ ( ( 𝐽 ∈ Comp ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ ∃ 𝑧 ∈ 𝐴 𝜑 ) ) → 𝐽 ∈ Comp ) | |
| 4 | 1 | cmpcov2 | ⊢ ( ( 𝐽 ∈ Comp ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ ∃ 𝑧 ∈ 𝐴 𝜑 ) ) → ∃ 𝑢 ∈ ( 𝒫 𝐽 ∩ Fin ) ( 𝑋 = ∪ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 ∃ 𝑧 ∈ 𝐴 𝜑 ) ) |
| 5 | elfpw | ⊢ ( 𝑢 ∈ ( 𝒫 𝐽 ∩ Fin ) ↔ ( 𝑢 ⊆ 𝐽 ∧ 𝑢 ∈ Fin ) ) | |
| 6 | simplrl | ⊢ ( ( ( 𝐽 ∈ Comp ∧ ( 𝑢 ⊆ 𝐽 ∧ 𝑢 ∈ Fin ) ) ∧ ( 𝑋 = ∪ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 ∃ 𝑧 ∈ 𝐴 𝜑 ) ) → 𝑢 ⊆ 𝐽 ) | |
| 7 | velpw | ⊢ ( 𝑢 ∈ 𝒫 𝐽 ↔ 𝑢 ⊆ 𝐽 ) | |
| 8 | 6 7 | sylibr | ⊢ ( ( ( 𝐽 ∈ Comp ∧ ( 𝑢 ⊆ 𝐽 ∧ 𝑢 ∈ Fin ) ) ∧ ( 𝑋 = ∪ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 ∃ 𝑧 ∈ 𝐴 𝜑 ) ) → 𝑢 ∈ 𝒫 𝐽 ) |
| 9 | simplrr | ⊢ ( ( ( 𝐽 ∈ Comp ∧ ( 𝑢 ⊆ 𝐽 ∧ 𝑢 ∈ Fin ) ) ∧ ( 𝑋 = ∪ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 ∃ 𝑧 ∈ 𝐴 𝜑 ) ) → 𝑢 ∈ Fin ) | |
| 10 | 8 9 | elind | ⊢ ( ( ( 𝐽 ∈ Comp ∧ ( 𝑢 ⊆ 𝐽 ∧ 𝑢 ∈ Fin ) ) ∧ ( 𝑋 = ∪ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 ∃ 𝑧 ∈ 𝐴 𝜑 ) ) → 𝑢 ∈ ( 𝒫 𝐽 ∩ Fin ) ) |
| 11 | simprl | ⊢ ( ( ( 𝐽 ∈ Comp ∧ ( 𝑢 ⊆ 𝐽 ∧ 𝑢 ∈ Fin ) ) ∧ ( 𝑋 = ∪ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 ∃ 𝑧 ∈ 𝐴 𝜑 ) ) → 𝑋 = ∪ 𝑢 ) | |
| 12 | simprr | ⊢ ( ( ( 𝐽 ∈ Comp ∧ ( 𝑢 ⊆ 𝐽 ∧ 𝑢 ∈ Fin ) ) ∧ ( 𝑋 = ∪ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 ∃ 𝑧 ∈ 𝐴 𝜑 ) ) → ∀ 𝑦 ∈ 𝑢 ∃ 𝑧 ∈ 𝐴 𝜑 ) | |
| 13 | 2 | ac6sfi | ⊢ ( ( 𝑢 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑢 ∃ 𝑧 ∈ 𝐴 𝜑 ) → ∃ 𝑓 ( 𝑓 : 𝑢 ⟶ 𝐴 ∧ ∀ 𝑦 ∈ 𝑢 𝜓 ) ) |
| 14 | 9 12 13 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Comp ∧ ( 𝑢 ⊆ 𝐽 ∧ 𝑢 ∈ Fin ) ) ∧ ( 𝑋 = ∪ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 ∃ 𝑧 ∈ 𝐴 𝜑 ) ) → ∃ 𝑓 ( 𝑓 : 𝑢 ⟶ 𝐴 ∧ ∀ 𝑦 ∈ 𝑢 𝜓 ) ) |
| 15 | unieq | ⊢ ( 𝑠 = 𝑢 → ∪ 𝑠 = ∪ 𝑢 ) | |
| 16 | 15 | eqeq2d | ⊢ ( 𝑠 = 𝑢 → ( 𝑋 = ∪ 𝑠 ↔ 𝑋 = ∪ 𝑢 ) ) |
| 17 | feq2 | ⊢ ( 𝑠 = 𝑢 → ( 𝑓 : 𝑠 ⟶ 𝐴 ↔ 𝑓 : 𝑢 ⟶ 𝐴 ) ) | |
| 18 | raleq | ⊢ ( 𝑠 = 𝑢 → ( ∀ 𝑦 ∈ 𝑠 𝜓 ↔ ∀ 𝑦 ∈ 𝑢 𝜓 ) ) | |
| 19 | 17 18 | anbi12d | ⊢ ( 𝑠 = 𝑢 → ( ( 𝑓 : 𝑠 ⟶ 𝐴 ∧ ∀ 𝑦 ∈ 𝑠 𝜓 ) ↔ ( 𝑓 : 𝑢 ⟶ 𝐴 ∧ ∀ 𝑦 ∈ 𝑢 𝜓 ) ) ) |
| 20 | 19 | exbidv | ⊢ ( 𝑠 = 𝑢 → ( ∃ 𝑓 ( 𝑓 : 𝑠 ⟶ 𝐴 ∧ ∀ 𝑦 ∈ 𝑠 𝜓 ) ↔ ∃ 𝑓 ( 𝑓 : 𝑢 ⟶ 𝐴 ∧ ∀ 𝑦 ∈ 𝑢 𝜓 ) ) ) |
| 21 | 16 20 | anbi12d | ⊢ ( 𝑠 = 𝑢 → ( ( 𝑋 = ∪ 𝑠 ∧ ∃ 𝑓 ( 𝑓 : 𝑠 ⟶ 𝐴 ∧ ∀ 𝑦 ∈ 𝑠 𝜓 ) ) ↔ ( 𝑋 = ∪ 𝑢 ∧ ∃ 𝑓 ( 𝑓 : 𝑢 ⟶ 𝐴 ∧ ∀ 𝑦 ∈ 𝑢 𝜓 ) ) ) ) |
| 22 | 21 | rspcev | ⊢ ( ( 𝑢 ∈ ( 𝒫 𝐽 ∩ Fin ) ∧ ( 𝑋 = ∪ 𝑢 ∧ ∃ 𝑓 ( 𝑓 : 𝑢 ⟶ 𝐴 ∧ ∀ 𝑦 ∈ 𝑢 𝜓 ) ) ) → ∃ 𝑠 ∈ ( 𝒫 𝐽 ∩ Fin ) ( 𝑋 = ∪ 𝑠 ∧ ∃ 𝑓 ( 𝑓 : 𝑠 ⟶ 𝐴 ∧ ∀ 𝑦 ∈ 𝑠 𝜓 ) ) ) |
| 23 | 10 11 14 22 | syl12anc | ⊢ ( ( ( 𝐽 ∈ Comp ∧ ( 𝑢 ⊆ 𝐽 ∧ 𝑢 ∈ Fin ) ) ∧ ( 𝑋 = ∪ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 ∃ 𝑧 ∈ 𝐴 𝜑 ) ) → ∃ 𝑠 ∈ ( 𝒫 𝐽 ∩ Fin ) ( 𝑋 = ∪ 𝑠 ∧ ∃ 𝑓 ( 𝑓 : 𝑠 ⟶ 𝐴 ∧ ∀ 𝑦 ∈ 𝑠 𝜓 ) ) ) |
| 24 | 23 | ex | ⊢ ( ( 𝐽 ∈ Comp ∧ ( 𝑢 ⊆ 𝐽 ∧ 𝑢 ∈ Fin ) ) → ( ( 𝑋 = ∪ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 ∃ 𝑧 ∈ 𝐴 𝜑 ) → ∃ 𝑠 ∈ ( 𝒫 𝐽 ∩ Fin ) ( 𝑋 = ∪ 𝑠 ∧ ∃ 𝑓 ( 𝑓 : 𝑠 ⟶ 𝐴 ∧ ∀ 𝑦 ∈ 𝑠 𝜓 ) ) ) ) |
| 25 | 5 24 | sylan2b | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝑢 ∈ ( 𝒫 𝐽 ∩ Fin ) ) → ( ( 𝑋 = ∪ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 ∃ 𝑧 ∈ 𝐴 𝜑 ) → ∃ 𝑠 ∈ ( 𝒫 𝐽 ∩ Fin ) ( 𝑋 = ∪ 𝑠 ∧ ∃ 𝑓 ( 𝑓 : 𝑠 ⟶ 𝐴 ∧ ∀ 𝑦 ∈ 𝑠 𝜓 ) ) ) ) |
| 26 | 25 | rexlimdva | ⊢ ( 𝐽 ∈ Comp → ( ∃ 𝑢 ∈ ( 𝒫 𝐽 ∩ Fin ) ( 𝑋 = ∪ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 ∃ 𝑧 ∈ 𝐴 𝜑 ) → ∃ 𝑠 ∈ ( 𝒫 𝐽 ∩ Fin ) ( 𝑋 = ∪ 𝑠 ∧ ∃ 𝑓 ( 𝑓 : 𝑠 ⟶ 𝐴 ∧ ∀ 𝑦 ∈ 𝑠 𝜓 ) ) ) ) |
| 27 | 3 4 26 | sylc | ⊢ ( ( 𝐽 ∈ Comp ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ ∃ 𝑧 ∈ 𝐴 𝜑 ) ) → ∃ 𝑠 ∈ ( 𝒫 𝐽 ∩ Fin ) ( 𝑋 = ∪ 𝑠 ∧ ∃ 𝑓 ( 𝑓 : 𝑠 ⟶ 𝐴 ∧ ∀ 𝑦 ∈ 𝑠 𝜓 ) ) ) |