This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset includes its interior. (Contributed by NM, 3-Oct-2007) (Revised by Mario Carneiro, 11-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | ntrss2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | ntrval | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ) |
| 3 | inss2 | ⊢ ( 𝐽 ∩ 𝒫 𝑆 ) ⊆ 𝒫 𝑆 | |
| 4 | 3 | unissi | ⊢ ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ⊆ ∪ 𝒫 𝑆 |
| 5 | unipw | ⊢ ∪ 𝒫 𝑆 = 𝑆 | |
| 6 | 4 5 | sseqtri | ⊢ ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ⊆ 𝑆 |
| 7 | 2 6 | eqsstrdi | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑆 ) |