This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Continuity of the composition operation as a function on continuous function spaces. (Contributed by Mario Carneiro, 20-Mar-2015) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xkococn.1 | |- F = ( f e. ( S Cn T ) , g e. ( R Cn S ) |-> ( f o. g ) ) |
|
| xkococn.s | |- ( ph -> S e. N-Locally Comp ) |
||
| xkococn.k | |- ( ph -> K C_ U. R ) |
||
| xkococn.c | |- ( ph -> ( R |`t K ) e. Comp ) |
||
| xkococn.v | |- ( ph -> V e. T ) |
||
| xkococn.a | |- ( ph -> A e. ( S Cn T ) ) |
||
| xkococn.b | |- ( ph -> B e. ( R Cn S ) ) |
||
| xkococn.i | |- ( ph -> ( ( A o. B ) " K ) C_ V ) |
||
| Assertion | xkococnlem | |- ( ph -> E. z e. ( ( T ^ko S ) tX ( S ^ko R ) ) ( <. A , B >. e. z /\ z C_ ( `' F " { h e. ( R Cn T ) | ( h " K ) C_ V } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xkococn.1 | |- F = ( f e. ( S Cn T ) , g e. ( R Cn S ) |-> ( f o. g ) ) |
|
| 2 | xkococn.s | |- ( ph -> S e. N-Locally Comp ) |
|
| 3 | xkococn.k | |- ( ph -> K C_ U. R ) |
|
| 4 | xkococn.c | |- ( ph -> ( R |`t K ) e. Comp ) |
|
| 5 | xkococn.v | |- ( ph -> V e. T ) |
|
| 6 | xkococn.a | |- ( ph -> A e. ( S Cn T ) ) |
|
| 7 | xkococn.b | |- ( ph -> B e. ( R Cn S ) ) |
|
| 8 | xkococn.i | |- ( ph -> ( ( A o. B ) " K ) C_ V ) |
|
| 9 | imacmp | |- ( ( B e. ( R Cn S ) /\ ( R |`t K ) e. Comp ) -> ( S |`t ( B " K ) ) e. Comp ) |
|
| 10 | 7 4 9 | syl2anc | |- ( ph -> ( S |`t ( B " K ) ) e. Comp ) |
| 11 | 2 | adantr | |- ( ( ph /\ x e. ( B " K ) ) -> S e. N-Locally Comp ) |
| 12 | cnima | |- ( ( A e. ( S Cn T ) /\ V e. T ) -> ( `' A " V ) e. S ) |
|
| 13 | 6 5 12 | syl2anc | |- ( ph -> ( `' A " V ) e. S ) |
| 14 | 13 | adantr | |- ( ( ph /\ x e. ( B " K ) ) -> ( `' A " V ) e. S ) |
| 15 | imaco | |- ( ( A o. B ) " K ) = ( A " ( B " K ) ) |
|
| 16 | 15 8 | eqsstrrid | |- ( ph -> ( A " ( B " K ) ) C_ V ) |
| 17 | eqid | |- U. S = U. S |
|
| 18 | eqid | |- U. T = U. T |
|
| 19 | 17 18 | cnf | |- ( A e. ( S Cn T ) -> A : U. S --> U. T ) |
| 20 | ffun | |- ( A : U. S --> U. T -> Fun A ) |
|
| 21 | 6 19 20 | 3syl | |- ( ph -> Fun A ) |
| 22 | imassrn | |- ( B " K ) C_ ran B |
|
| 23 | eqid | |- U. R = U. R |
|
| 24 | 23 17 | cnf | |- ( B e. ( R Cn S ) -> B : U. R --> U. S ) |
| 25 | frn | |- ( B : U. R --> U. S -> ran B C_ U. S ) |
|
| 26 | 7 24 25 | 3syl | |- ( ph -> ran B C_ U. S ) |
| 27 | 22 26 | sstrid | |- ( ph -> ( B " K ) C_ U. S ) |
| 28 | fdm | |- ( A : U. S --> U. T -> dom A = U. S ) |
|
| 29 | 6 19 28 | 3syl | |- ( ph -> dom A = U. S ) |
| 30 | 27 29 | sseqtrrd | |- ( ph -> ( B " K ) C_ dom A ) |
| 31 | funimass3 | |- ( ( Fun A /\ ( B " K ) C_ dom A ) -> ( ( A " ( B " K ) ) C_ V <-> ( B " K ) C_ ( `' A " V ) ) ) |
|
| 32 | 21 30 31 | syl2anc | |- ( ph -> ( ( A " ( B " K ) ) C_ V <-> ( B " K ) C_ ( `' A " V ) ) ) |
| 33 | 16 32 | mpbid | |- ( ph -> ( B " K ) C_ ( `' A " V ) ) |
| 34 | 33 | sselda | |- ( ( ph /\ x e. ( B " K ) ) -> x e. ( `' A " V ) ) |
| 35 | nlly2i | |- ( ( S e. N-Locally Comp /\ ( `' A " V ) e. S /\ x e. ( `' A " V ) ) -> E. s e. ~P ( `' A " V ) E. u e. S ( x e. u /\ u C_ s /\ ( S |`t s ) e. Comp ) ) |
|
| 36 | 11 14 34 35 | syl3anc | |- ( ( ph /\ x e. ( B " K ) ) -> E. s e. ~P ( `' A " V ) E. u e. S ( x e. u /\ u C_ s /\ ( S |`t s ) e. Comp ) ) |
| 37 | nllytop | |- ( S e. N-Locally Comp -> S e. Top ) |
|
| 38 | 2 37 | syl | |- ( ph -> S e. Top ) |
| 39 | 38 | ad3antrrr | |- ( ( ( ( ph /\ x e. ( B " K ) ) /\ s e. ~P ( `' A " V ) ) /\ ( u e. S /\ ( x e. u /\ u C_ s /\ ( S |`t s ) e. Comp ) ) ) -> S e. Top ) |
| 40 | imaexg | |- ( B e. ( R Cn S ) -> ( B " K ) e. _V ) |
|
| 41 | 7 40 | syl | |- ( ph -> ( B " K ) e. _V ) |
| 42 | 41 | ad3antrrr | |- ( ( ( ( ph /\ x e. ( B " K ) ) /\ s e. ~P ( `' A " V ) ) /\ ( u e. S /\ ( x e. u /\ u C_ s /\ ( S |`t s ) e. Comp ) ) ) -> ( B " K ) e. _V ) |
| 43 | simprl | |- ( ( ( ( ph /\ x e. ( B " K ) ) /\ s e. ~P ( `' A " V ) ) /\ ( u e. S /\ ( x e. u /\ u C_ s /\ ( S |`t s ) e. Comp ) ) ) -> u e. S ) |
|
| 44 | elrestr | |- ( ( S e. Top /\ ( B " K ) e. _V /\ u e. S ) -> ( u i^i ( B " K ) ) e. ( S |`t ( B " K ) ) ) |
|
| 45 | 39 42 43 44 | syl3anc | |- ( ( ( ( ph /\ x e. ( B " K ) ) /\ s e. ~P ( `' A " V ) ) /\ ( u e. S /\ ( x e. u /\ u C_ s /\ ( S |`t s ) e. Comp ) ) ) -> ( u i^i ( B " K ) ) e. ( S |`t ( B " K ) ) ) |
| 46 | simprr1 | |- ( ( ( ( ph /\ x e. ( B " K ) ) /\ s e. ~P ( `' A " V ) ) /\ ( u e. S /\ ( x e. u /\ u C_ s /\ ( S |`t s ) e. Comp ) ) ) -> x e. u ) |
|
| 47 | simpllr | |- ( ( ( ( ph /\ x e. ( B " K ) ) /\ s e. ~P ( `' A " V ) ) /\ ( u e. S /\ ( x e. u /\ u C_ s /\ ( S |`t s ) e. Comp ) ) ) -> x e. ( B " K ) ) |
|
| 48 | 46 47 | elind | |- ( ( ( ( ph /\ x e. ( B " K ) ) /\ s e. ~P ( `' A " V ) ) /\ ( u e. S /\ ( x e. u /\ u C_ s /\ ( S |`t s ) e. Comp ) ) ) -> x e. ( u i^i ( B " K ) ) ) |
| 49 | inss1 | |- ( u i^i ( B " K ) ) C_ u |
|
| 50 | elpwi | |- ( s e. ~P ( `' A " V ) -> s C_ ( `' A " V ) ) |
|
| 51 | 50 | ad2antlr | |- ( ( ( ( ph /\ x e. ( B " K ) ) /\ s e. ~P ( `' A " V ) ) /\ ( u e. S /\ ( x e. u /\ u C_ s /\ ( S |`t s ) e. Comp ) ) ) -> s C_ ( `' A " V ) ) |
| 52 | elssuni | |- ( ( `' A " V ) e. S -> ( `' A " V ) C_ U. S ) |
|
| 53 | 13 52 | syl | |- ( ph -> ( `' A " V ) C_ U. S ) |
| 54 | 53 | ad3antrrr | |- ( ( ( ( ph /\ x e. ( B " K ) ) /\ s e. ~P ( `' A " V ) ) /\ ( u e. S /\ ( x e. u /\ u C_ s /\ ( S |`t s ) e. Comp ) ) ) -> ( `' A " V ) C_ U. S ) |
| 55 | 51 54 | sstrd | |- ( ( ( ( ph /\ x e. ( B " K ) ) /\ s e. ~P ( `' A " V ) ) /\ ( u e. S /\ ( x e. u /\ u C_ s /\ ( S |`t s ) e. Comp ) ) ) -> s C_ U. S ) |
| 56 | simprr2 | |- ( ( ( ( ph /\ x e. ( B " K ) ) /\ s e. ~P ( `' A " V ) ) /\ ( u e. S /\ ( x e. u /\ u C_ s /\ ( S |`t s ) e. Comp ) ) ) -> u C_ s ) |
|
| 57 | 17 | ssntr | |- ( ( ( S e. Top /\ s C_ U. S ) /\ ( u e. S /\ u C_ s ) ) -> u C_ ( ( int ` S ) ` s ) ) |
| 58 | 39 55 43 56 57 | syl22anc | |- ( ( ( ( ph /\ x e. ( B " K ) ) /\ s e. ~P ( `' A " V ) ) /\ ( u e. S /\ ( x e. u /\ u C_ s /\ ( S |`t s ) e. Comp ) ) ) -> u C_ ( ( int ` S ) ` s ) ) |
| 59 | 49 58 | sstrid | |- ( ( ( ( ph /\ x e. ( B " K ) ) /\ s e. ~P ( `' A " V ) ) /\ ( u e. S /\ ( x e. u /\ u C_ s /\ ( S |`t s ) e. Comp ) ) ) -> ( u i^i ( B " K ) ) C_ ( ( int ` S ) ` s ) ) |
| 60 | simprr3 | |- ( ( ( ( ph /\ x e. ( B " K ) ) /\ s e. ~P ( `' A " V ) ) /\ ( u e. S /\ ( x e. u /\ u C_ s /\ ( S |`t s ) e. Comp ) ) ) -> ( S |`t s ) e. Comp ) |
|
| 61 | 59 60 | jca | |- ( ( ( ( ph /\ x e. ( B " K ) ) /\ s e. ~P ( `' A " V ) ) /\ ( u e. S /\ ( x e. u /\ u C_ s /\ ( S |`t s ) e. Comp ) ) ) -> ( ( u i^i ( B " K ) ) C_ ( ( int ` S ) ` s ) /\ ( S |`t s ) e. Comp ) ) |
| 62 | eleq2 | |- ( y = ( u i^i ( B " K ) ) -> ( x e. y <-> x e. ( u i^i ( B " K ) ) ) ) |
|
| 63 | cleq1lem | |- ( y = ( u i^i ( B " K ) ) -> ( ( y C_ ( ( int ` S ) ` s ) /\ ( S |`t s ) e. Comp ) <-> ( ( u i^i ( B " K ) ) C_ ( ( int ` S ) ` s ) /\ ( S |`t s ) e. Comp ) ) ) |
|
| 64 | 62 63 | anbi12d | |- ( y = ( u i^i ( B " K ) ) -> ( ( x e. y /\ ( y C_ ( ( int ` S ) ` s ) /\ ( S |`t s ) e. Comp ) ) <-> ( x e. ( u i^i ( B " K ) ) /\ ( ( u i^i ( B " K ) ) C_ ( ( int ` S ) ` s ) /\ ( S |`t s ) e. Comp ) ) ) ) |
| 65 | 64 | rspcev | |- ( ( ( u i^i ( B " K ) ) e. ( S |`t ( B " K ) ) /\ ( x e. ( u i^i ( B " K ) ) /\ ( ( u i^i ( B " K ) ) C_ ( ( int ` S ) ` s ) /\ ( S |`t s ) e. Comp ) ) ) -> E. y e. ( S |`t ( B " K ) ) ( x e. y /\ ( y C_ ( ( int ` S ) ` s ) /\ ( S |`t s ) e. Comp ) ) ) |
| 66 | 45 48 61 65 | syl12anc | |- ( ( ( ( ph /\ x e. ( B " K ) ) /\ s e. ~P ( `' A " V ) ) /\ ( u e. S /\ ( x e. u /\ u C_ s /\ ( S |`t s ) e. Comp ) ) ) -> E. y e. ( S |`t ( B " K ) ) ( x e. y /\ ( y C_ ( ( int ` S ) ` s ) /\ ( S |`t s ) e. Comp ) ) ) |
| 67 | 66 | rexlimdvaa | |- ( ( ( ph /\ x e. ( B " K ) ) /\ s e. ~P ( `' A " V ) ) -> ( E. u e. S ( x e. u /\ u C_ s /\ ( S |`t s ) e. Comp ) -> E. y e. ( S |`t ( B " K ) ) ( x e. y /\ ( y C_ ( ( int ` S ) ` s ) /\ ( S |`t s ) e. Comp ) ) ) ) |
| 68 | 67 | reximdva | |- ( ( ph /\ x e. ( B " K ) ) -> ( E. s e. ~P ( `' A " V ) E. u e. S ( x e. u /\ u C_ s /\ ( S |`t s ) e. Comp ) -> E. s e. ~P ( `' A " V ) E. y e. ( S |`t ( B " K ) ) ( x e. y /\ ( y C_ ( ( int ` S ) ` s ) /\ ( S |`t s ) e. Comp ) ) ) ) |
| 69 | 36 68 | mpd | |- ( ( ph /\ x e. ( B " K ) ) -> E. s e. ~P ( `' A " V ) E. y e. ( S |`t ( B " K ) ) ( x e. y /\ ( y C_ ( ( int ` S ) ` s ) /\ ( S |`t s ) e. Comp ) ) ) |
| 70 | rexcom | |- ( E. s e. ~P ( `' A " V ) E. y e. ( S |`t ( B " K ) ) ( x e. y /\ ( y C_ ( ( int ` S ) ` s ) /\ ( S |`t s ) e. Comp ) ) <-> E. y e. ( S |`t ( B " K ) ) E. s e. ~P ( `' A " V ) ( x e. y /\ ( y C_ ( ( int ` S ) ` s ) /\ ( S |`t s ) e. Comp ) ) ) |
|
| 71 | r19.42v | |- ( E. s e. ~P ( `' A " V ) ( x e. y /\ ( y C_ ( ( int ` S ) ` s ) /\ ( S |`t s ) e. Comp ) ) <-> ( x e. y /\ E. s e. ~P ( `' A " V ) ( y C_ ( ( int ` S ) ` s ) /\ ( S |`t s ) e. Comp ) ) ) |
|
| 72 | 71 | rexbii | |- ( E. y e. ( S |`t ( B " K ) ) E. s e. ~P ( `' A " V ) ( x e. y /\ ( y C_ ( ( int ` S ) ` s ) /\ ( S |`t s ) e. Comp ) ) <-> E. y e. ( S |`t ( B " K ) ) ( x e. y /\ E. s e. ~P ( `' A " V ) ( y C_ ( ( int ` S ) ` s ) /\ ( S |`t s ) e. Comp ) ) ) |
| 73 | 70 72 | bitri | |- ( E. s e. ~P ( `' A " V ) E. y e. ( S |`t ( B " K ) ) ( x e. y /\ ( y C_ ( ( int ` S ) ` s ) /\ ( S |`t s ) e. Comp ) ) <-> E. y e. ( S |`t ( B " K ) ) ( x e. y /\ E. s e. ~P ( `' A " V ) ( y C_ ( ( int ` S ) ` s ) /\ ( S |`t s ) e. Comp ) ) ) |
| 74 | 69 73 | sylib | |- ( ( ph /\ x e. ( B " K ) ) -> E. y e. ( S |`t ( B " K ) ) ( x e. y /\ E. s e. ~P ( `' A " V ) ( y C_ ( ( int ` S ) ` s ) /\ ( S |`t s ) e. Comp ) ) ) |
| 75 | 74 | ralrimiva | |- ( ph -> A. x e. ( B " K ) E. y e. ( S |`t ( B " K ) ) ( x e. y /\ E. s e. ~P ( `' A " V ) ( y C_ ( ( int ` S ) ` s ) /\ ( S |`t s ) e. Comp ) ) ) |
| 76 | 17 | restuni | |- ( ( S e. Top /\ ( B " K ) C_ U. S ) -> ( B " K ) = U. ( S |`t ( B " K ) ) ) |
| 77 | 38 27 76 | syl2anc | |- ( ph -> ( B " K ) = U. ( S |`t ( B " K ) ) ) |
| 78 | 75 77 | raleqtrdv | |- ( ph -> A. x e. U. ( S |`t ( B " K ) ) E. y e. ( S |`t ( B " K ) ) ( x e. y /\ E. s e. ~P ( `' A " V ) ( y C_ ( ( int ` S ) ` s ) /\ ( S |`t s ) e. Comp ) ) ) |
| 79 | eqid | |- U. ( S |`t ( B " K ) ) = U. ( S |`t ( B " K ) ) |
|
| 80 | fveq2 | |- ( s = ( k ` y ) -> ( ( int ` S ) ` s ) = ( ( int ` S ) ` ( k ` y ) ) ) |
|
| 81 | 80 | sseq2d | |- ( s = ( k ` y ) -> ( y C_ ( ( int ` S ) ` s ) <-> y C_ ( ( int ` S ) ` ( k ` y ) ) ) ) |
| 82 | oveq2 | |- ( s = ( k ` y ) -> ( S |`t s ) = ( S |`t ( k ` y ) ) ) |
|
| 83 | 82 | eleq1d | |- ( s = ( k ` y ) -> ( ( S |`t s ) e. Comp <-> ( S |`t ( k ` y ) ) e. Comp ) ) |
| 84 | 81 83 | anbi12d | |- ( s = ( k ` y ) -> ( ( y C_ ( ( int ` S ) ` s ) /\ ( S |`t s ) e. Comp ) <-> ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) |
| 85 | 79 84 | cmpcovf | |- ( ( ( S |`t ( B " K ) ) e. Comp /\ A. x e. U. ( S |`t ( B " K ) ) E. y e. ( S |`t ( B " K ) ) ( x e. y /\ E. s e. ~P ( `' A " V ) ( y C_ ( ( int ` S ) ` s ) /\ ( S |`t s ) e. Comp ) ) ) -> E. w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ( U. ( S |`t ( B " K ) ) = U. w /\ E. k ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) |
| 86 | 10 78 85 | syl2anc | |- ( ph -> E. w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ( U. ( S |`t ( B " K ) ) = U. w /\ E. k ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) |
| 87 | 77 | adantr | |- ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) -> ( B " K ) = U. ( S |`t ( B " K ) ) ) |
| 88 | 87 | eqeq1d | |- ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) -> ( ( B " K ) = U. w <-> U. ( S |`t ( B " K ) ) = U. w ) ) |
| 89 | 88 | biimpar | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ U. ( S |`t ( B " K ) ) = U. w ) -> ( B " K ) = U. w ) |
| 90 | 38 | ad2antrr | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> S e. Top ) |
| 91 | cntop2 | |- ( A e. ( S Cn T ) -> T e. Top ) |
|
| 92 | 6 91 | syl | |- ( ph -> T e. Top ) |
| 93 | 92 | ad2antrr | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> T e. Top ) |
| 94 | xkotop | |- ( ( S e. Top /\ T e. Top ) -> ( T ^ko S ) e. Top ) |
|
| 95 | 90 93 94 | syl2anc | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> ( T ^ko S ) e. Top ) |
| 96 | cntop1 | |- ( B e. ( R Cn S ) -> R e. Top ) |
|
| 97 | 7 96 | syl | |- ( ph -> R e. Top ) |
| 98 | 97 | ad2antrr | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> R e. Top ) |
| 99 | xkotop | |- ( ( R e. Top /\ S e. Top ) -> ( S ^ko R ) e. Top ) |
|
| 100 | 98 90 99 | syl2anc | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> ( S ^ko R ) e. Top ) |
| 101 | simprrl | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> k : w --> ~P ( `' A " V ) ) |
|
| 102 | 101 | frnd | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> ran k C_ ~P ( `' A " V ) ) |
| 103 | sspwuni | |- ( ran k C_ ~P ( `' A " V ) <-> U. ran k C_ ( `' A " V ) ) |
|
| 104 | 102 103 | sylib | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> U. ran k C_ ( `' A " V ) ) |
| 105 | 13 | ad2antrr | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> ( `' A " V ) e. S ) |
| 106 | 105 52 | syl | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> ( `' A " V ) C_ U. S ) |
| 107 | 104 106 | sstrd | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> U. ran k C_ U. S ) |
| 108 | ffn | |- ( k : w --> ~P ( `' A " V ) -> k Fn w ) |
|
| 109 | fniunfv | |- ( k Fn w -> U_ y e. w ( k ` y ) = U. ran k ) |
|
| 110 | 101 108 109 | 3syl | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> U_ y e. w ( k ` y ) = U. ran k ) |
| 111 | 110 | oveq2d | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> ( S |`t U_ y e. w ( k ` y ) ) = ( S |`t U. ran k ) ) |
| 112 | simplr | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) |
|
| 113 | 112 | elin2d | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> w e. Fin ) |
| 114 | simprrr | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) |
|
| 115 | simpr | |- ( ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) -> ( S |`t ( k ` y ) ) e. Comp ) |
|
| 116 | 115 | ralimi | |- ( A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) -> A. y e. w ( S |`t ( k ` y ) ) e. Comp ) |
| 117 | 114 116 | syl | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> A. y e. w ( S |`t ( k ` y ) ) e. Comp ) |
| 118 | 17 | fiuncmp | |- ( ( S e. Top /\ w e. Fin /\ A. y e. w ( S |`t ( k ` y ) ) e. Comp ) -> ( S |`t U_ y e. w ( k ` y ) ) e. Comp ) |
| 119 | 90 113 117 118 | syl3anc | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> ( S |`t U_ y e. w ( k ` y ) ) e. Comp ) |
| 120 | 111 119 | eqeltrrd | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> ( S |`t U. ran k ) e. Comp ) |
| 121 | 5 | ad2antrr | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> V e. T ) |
| 122 | 17 90 93 107 120 121 | xkoopn | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> { a e. ( S Cn T ) | ( a " U. ran k ) C_ V } e. ( T ^ko S ) ) |
| 123 | 3 | ad2antrr | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> K C_ U. R ) |
| 124 | 4 | ad2antrr | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> ( R |`t K ) e. Comp ) |
| 125 | 110 107 | eqsstrd | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> U_ y e. w ( k ` y ) C_ U. S ) |
| 126 | iunss | |- ( U_ y e. w ( k ` y ) C_ U. S <-> A. y e. w ( k ` y ) C_ U. S ) |
|
| 127 | 125 126 | sylib | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> A. y e. w ( k ` y ) C_ U. S ) |
| 128 | 17 | ntropn | |- ( ( S e. Top /\ ( k ` y ) C_ U. S ) -> ( ( int ` S ) ` ( k ` y ) ) e. S ) |
| 129 | 128 | ex | |- ( S e. Top -> ( ( k ` y ) C_ U. S -> ( ( int ` S ) ` ( k ` y ) ) e. S ) ) |
| 130 | 129 | ralimdv | |- ( S e. Top -> ( A. y e. w ( k ` y ) C_ U. S -> A. y e. w ( ( int ` S ) ` ( k ` y ) ) e. S ) ) |
| 131 | 90 127 130 | sylc | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> A. y e. w ( ( int ` S ) ` ( k ` y ) ) e. S ) |
| 132 | iunopn | |- ( ( S e. Top /\ A. y e. w ( ( int ` S ) ` ( k ` y ) ) e. S ) -> U_ y e. w ( ( int ` S ) ` ( k ` y ) ) e. S ) |
|
| 133 | 90 131 132 | syl2anc | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> U_ y e. w ( ( int ` S ) ` ( k ` y ) ) e. S ) |
| 134 | 23 98 90 123 124 133 | xkoopn | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> { b e. ( R Cn S ) | ( b " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) } e. ( S ^ko R ) ) |
| 135 | txopn | |- ( ( ( ( T ^ko S ) e. Top /\ ( S ^ko R ) e. Top ) /\ ( { a e. ( S Cn T ) | ( a " U. ran k ) C_ V } e. ( T ^ko S ) /\ { b e. ( R Cn S ) | ( b " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) } e. ( S ^ko R ) ) ) -> ( { a e. ( S Cn T ) | ( a " U. ran k ) C_ V } X. { b e. ( R Cn S ) | ( b " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) } ) e. ( ( T ^ko S ) tX ( S ^ko R ) ) ) |
|
| 136 | 95 100 122 134 135 | syl22anc | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> ( { a e. ( S Cn T ) | ( a " U. ran k ) C_ V } X. { b e. ( R Cn S ) | ( b " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) } ) e. ( ( T ^ko S ) tX ( S ^ko R ) ) ) |
| 137 | imaeq1 | |- ( a = A -> ( a " U. ran k ) = ( A " U. ran k ) ) |
|
| 138 | 137 | sseq1d | |- ( a = A -> ( ( a " U. ran k ) C_ V <-> ( A " U. ran k ) C_ V ) ) |
| 139 | 6 | ad2antrr | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> A e. ( S Cn T ) ) |
| 140 | imaiun | |- ( A " U_ y e. w ( k ` y ) ) = U_ y e. w ( A " ( k ` y ) ) |
|
| 141 | 110 | imaeq2d | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> ( A " U_ y e. w ( k ` y ) ) = ( A " U. ran k ) ) |
| 142 | 140 141 | eqtr3id | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> U_ y e. w ( A " ( k ` y ) ) = ( A " U. ran k ) ) |
| 143 | 110 104 | eqsstrd | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> U_ y e. w ( k ` y ) C_ ( `' A " V ) ) |
| 144 | 21 | ad2antrr | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> Fun A ) |
| 145 | 101 108 | syl | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> k Fn w ) |
| 146 | 29 | ad2antrr | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> dom A = U. S ) |
| 147 | 107 146 | sseqtrrd | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> U. ran k C_ dom A ) |
| 148 | simpl1 | |- ( ( ( Fun A /\ k Fn w /\ U. ran k C_ dom A ) /\ y e. w ) -> Fun A ) |
|
| 149 | 109 | 3ad2ant2 | |- ( ( Fun A /\ k Fn w /\ U. ran k C_ dom A ) -> U_ y e. w ( k ` y ) = U. ran k ) |
| 150 | simp3 | |- ( ( Fun A /\ k Fn w /\ U. ran k C_ dom A ) -> U. ran k C_ dom A ) |
|
| 151 | 149 150 | eqsstrd | |- ( ( Fun A /\ k Fn w /\ U. ran k C_ dom A ) -> U_ y e. w ( k ` y ) C_ dom A ) |
| 152 | iunss | |- ( U_ y e. w ( k ` y ) C_ dom A <-> A. y e. w ( k ` y ) C_ dom A ) |
|
| 153 | 151 152 | sylib | |- ( ( Fun A /\ k Fn w /\ U. ran k C_ dom A ) -> A. y e. w ( k ` y ) C_ dom A ) |
| 154 | 153 | r19.21bi | |- ( ( ( Fun A /\ k Fn w /\ U. ran k C_ dom A ) /\ y e. w ) -> ( k ` y ) C_ dom A ) |
| 155 | funimass3 | |- ( ( Fun A /\ ( k ` y ) C_ dom A ) -> ( ( A " ( k ` y ) ) C_ V <-> ( k ` y ) C_ ( `' A " V ) ) ) |
|
| 156 | 148 154 155 | syl2anc | |- ( ( ( Fun A /\ k Fn w /\ U. ran k C_ dom A ) /\ y e. w ) -> ( ( A " ( k ` y ) ) C_ V <-> ( k ` y ) C_ ( `' A " V ) ) ) |
| 157 | 156 | ralbidva | |- ( ( Fun A /\ k Fn w /\ U. ran k C_ dom A ) -> ( A. y e. w ( A " ( k ` y ) ) C_ V <-> A. y e. w ( k ` y ) C_ ( `' A " V ) ) ) |
| 158 | iunss | |- ( U_ y e. w ( A " ( k ` y ) ) C_ V <-> A. y e. w ( A " ( k ` y ) ) C_ V ) |
|
| 159 | iunss | |- ( U_ y e. w ( k ` y ) C_ ( `' A " V ) <-> A. y e. w ( k ` y ) C_ ( `' A " V ) ) |
|
| 160 | 157 158 159 | 3bitr4g | |- ( ( Fun A /\ k Fn w /\ U. ran k C_ dom A ) -> ( U_ y e. w ( A " ( k ` y ) ) C_ V <-> U_ y e. w ( k ` y ) C_ ( `' A " V ) ) ) |
| 161 | 144 145 147 160 | syl3anc | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> ( U_ y e. w ( A " ( k ` y ) ) C_ V <-> U_ y e. w ( k ` y ) C_ ( `' A " V ) ) ) |
| 162 | 143 161 | mpbird | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> U_ y e. w ( A " ( k ` y ) ) C_ V ) |
| 163 | 142 162 | eqsstrrd | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> ( A " U. ran k ) C_ V ) |
| 164 | 138 139 163 | elrabd | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> A e. { a e. ( S Cn T ) | ( a " U. ran k ) C_ V } ) |
| 165 | imaeq1 | |- ( b = B -> ( b " K ) = ( B " K ) ) |
|
| 166 | 165 | sseq1d | |- ( b = B -> ( ( b " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) <-> ( B " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) ) ) |
| 167 | 7 | ad2antrr | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> B e. ( R Cn S ) ) |
| 168 | simprl | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> ( B " K ) = U. w ) |
|
| 169 | uniiun | |- U. w = U_ y e. w y |
|
| 170 | 168 169 | eqtrdi | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> ( B " K ) = U_ y e. w y ) |
| 171 | simpl | |- ( ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) -> y C_ ( ( int ` S ) ` ( k ` y ) ) ) |
|
| 172 | 171 | ralimi | |- ( A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) -> A. y e. w y C_ ( ( int ` S ) ` ( k ` y ) ) ) |
| 173 | ss2iun | |- ( A. y e. w y C_ ( ( int ` S ) ` ( k ` y ) ) -> U_ y e. w y C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) ) |
|
| 174 | 114 172 173 | 3syl | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> U_ y e. w y C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) ) |
| 175 | 170 174 | eqsstrd | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> ( B " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) ) |
| 176 | 166 167 175 | elrabd | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> B e. { b e. ( R Cn S ) | ( b " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) } ) |
| 177 | 164 176 | opelxpd | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> <. A , B >. e. ( { a e. ( S Cn T ) | ( a " U. ran k ) C_ V } X. { b e. ( R Cn S ) | ( b " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) } ) ) |
| 178 | imaeq1 | |- ( a = u -> ( a " U. ran k ) = ( u " U. ran k ) ) |
|
| 179 | 178 | sseq1d | |- ( a = u -> ( ( a " U. ran k ) C_ V <-> ( u " U. ran k ) C_ V ) ) |
| 180 | 179 | elrab | |- ( u e. { a e. ( S Cn T ) | ( a " U. ran k ) C_ V } <-> ( u e. ( S Cn T ) /\ ( u " U. ran k ) C_ V ) ) |
| 181 | imaeq1 | |- ( b = v -> ( b " K ) = ( v " K ) ) |
|
| 182 | 181 | sseq1d | |- ( b = v -> ( ( b " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) <-> ( v " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) ) ) |
| 183 | 182 | elrab | |- ( v e. { b e. ( R Cn S ) | ( b " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) } <-> ( v e. ( R Cn S ) /\ ( v " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) ) ) |
| 184 | 180 183 | anbi12i | |- ( ( u e. { a e. ( S Cn T ) | ( a " U. ran k ) C_ V } /\ v e. { b e. ( R Cn S ) | ( b " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) } ) <-> ( ( u e. ( S Cn T ) /\ ( u " U. ran k ) C_ V ) /\ ( v e. ( R Cn S ) /\ ( v " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) ) ) ) |
| 185 | simprll | |- ( ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) /\ ( ( u e. ( S Cn T ) /\ ( u " U. ran k ) C_ V ) /\ ( v e. ( R Cn S ) /\ ( v " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) ) ) ) -> u e. ( S Cn T ) ) |
|
| 186 | simprrl | |- ( ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) /\ ( ( u e. ( S Cn T ) /\ ( u " U. ran k ) C_ V ) /\ ( v e. ( R Cn S ) /\ ( v " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) ) ) ) -> v e. ( R Cn S ) ) |
|
| 187 | coeq1 | |- ( f = u -> ( f o. g ) = ( u o. g ) ) |
|
| 188 | coeq2 | |- ( g = v -> ( u o. g ) = ( u o. v ) ) |
|
| 189 | vex | |- u e. _V |
|
| 190 | vex | |- v e. _V |
|
| 191 | 189 190 | coex | |- ( u o. v ) e. _V |
| 192 | 187 188 1 191 | ovmpo | |- ( ( u e. ( S Cn T ) /\ v e. ( R Cn S ) ) -> ( u F v ) = ( u o. v ) ) |
| 193 | 185 186 192 | syl2anc | |- ( ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) /\ ( ( u e. ( S Cn T ) /\ ( u " U. ran k ) C_ V ) /\ ( v e. ( R Cn S ) /\ ( v " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) ) ) ) -> ( u F v ) = ( u o. v ) ) |
| 194 | imaeq1 | |- ( h = ( u o. v ) -> ( h " K ) = ( ( u o. v ) " K ) ) |
|
| 195 | 194 | sseq1d | |- ( h = ( u o. v ) -> ( ( h " K ) C_ V <-> ( ( u o. v ) " K ) C_ V ) ) |
| 196 | cnco | |- ( ( v e. ( R Cn S ) /\ u e. ( S Cn T ) ) -> ( u o. v ) e. ( R Cn T ) ) |
|
| 197 | 186 185 196 | syl2anc | |- ( ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) /\ ( ( u e. ( S Cn T ) /\ ( u " U. ran k ) C_ V ) /\ ( v e. ( R Cn S ) /\ ( v " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) ) ) ) -> ( u o. v ) e. ( R Cn T ) ) |
| 198 | imaco | |- ( ( u o. v ) " K ) = ( u " ( v " K ) ) |
|
| 199 | simprrr | |- ( ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) /\ ( ( u e. ( S Cn T ) /\ ( u " U. ran k ) C_ V ) /\ ( v e. ( R Cn S ) /\ ( v " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) ) ) ) -> ( v " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) ) |
|
| 200 | 17 | ntrss2 | |- ( ( S e. Top /\ ( k ` y ) C_ U. S ) -> ( ( int ` S ) ` ( k ` y ) ) C_ ( k ` y ) ) |
| 201 | 200 | ex | |- ( S e. Top -> ( ( k ` y ) C_ U. S -> ( ( int ` S ) ` ( k ` y ) ) C_ ( k ` y ) ) ) |
| 202 | 201 | ralimdv | |- ( S e. Top -> ( A. y e. w ( k ` y ) C_ U. S -> A. y e. w ( ( int ` S ) ` ( k ` y ) ) C_ ( k ` y ) ) ) |
| 203 | 90 127 202 | sylc | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> A. y e. w ( ( int ` S ) ` ( k ` y ) ) C_ ( k ` y ) ) |
| 204 | ss2iun | |- ( A. y e. w ( ( int ` S ) ` ( k ` y ) ) C_ ( k ` y ) -> U_ y e. w ( ( int ` S ) ` ( k ` y ) ) C_ U_ y e. w ( k ` y ) ) |
|
| 205 | 203 204 | syl | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> U_ y e. w ( ( int ` S ) ` ( k ` y ) ) C_ U_ y e. w ( k ` y ) ) |
| 206 | 205 110 | sseqtrd | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> U_ y e. w ( ( int ` S ) ` ( k ` y ) ) C_ U. ran k ) |
| 207 | 206 | adantr | |- ( ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) /\ ( ( u e. ( S Cn T ) /\ ( u " U. ran k ) C_ V ) /\ ( v e. ( R Cn S ) /\ ( v " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) ) ) ) -> U_ y e. w ( ( int ` S ) ` ( k ` y ) ) C_ U. ran k ) |
| 208 | 199 207 | sstrd | |- ( ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) /\ ( ( u e. ( S Cn T ) /\ ( u " U. ran k ) C_ V ) /\ ( v e. ( R Cn S ) /\ ( v " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) ) ) ) -> ( v " K ) C_ U. ran k ) |
| 209 | imass2 | |- ( ( v " K ) C_ U. ran k -> ( u " ( v " K ) ) C_ ( u " U. ran k ) ) |
|
| 210 | 208 209 | syl | |- ( ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) /\ ( ( u e. ( S Cn T ) /\ ( u " U. ran k ) C_ V ) /\ ( v e. ( R Cn S ) /\ ( v " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) ) ) ) -> ( u " ( v " K ) ) C_ ( u " U. ran k ) ) |
| 211 | simprlr | |- ( ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) /\ ( ( u e. ( S Cn T ) /\ ( u " U. ran k ) C_ V ) /\ ( v e. ( R Cn S ) /\ ( v " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) ) ) ) -> ( u " U. ran k ) C_ V ) |
|
| 212 | 210 211 | sstrd | |- ( ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) /\ ( ( u e. ( S Cn T ) /\ ( u " U. ran k ) C_ V ) /\ ( v e. ( R Cn S ) /\ ( v " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) ) ) ) -> ( u " ( v " K ) ) C_ V ) |
| 213 | 198 212 | eqsstrid | |- ( ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) /\ ( ( u e. ( S Cn T ) /\ ( u " U. ran k ) C_ V ) /\ ( v e. ( R Cn S ) /\ ( v " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) ) ) ) -> ( ( u o. v ) " K ) C_ V ) |
| 214 | 195 197 213 | elrabd | |- ( ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) /\ ( ( u e. ( S Cn T ) /\ ( u " U. ran k ) C_ V ) /\ ( v e. ( R Cn S ) /\ ( v " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) ) ) ) -> ( u o. v ) e. { h e. ( R Cn T ) | ( h " K ) C_ V } ) |
| 215 | 193 214 | eqeltrd | |- ( ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) /\ ( ( u e. ( S Cn T ) /\ ( u " U. ran k ) C_ V ) /\ ( v e. ( R Cn S ) /\ ( v " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) ) ) ) -> ( u F v ) e. { h e. ( R Cn T ) | ( h " K ) C_ V } ) |
| 216 | 184 215 | sylan2b | |- ( ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) /\ ( u e. { a e. ( S Cn T ) | ( a " U. ran k ) C_ V } /\ v e. { b e. ( R Cn S ) | ( b " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) } ) ) -> ( u F v ) e. { h e. ( R Cn T ) | ( h " K ) C_ V } ) |
| 217 | 216 | ralrimivva | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> A. u e. { a e. ( S Cn T ) | ( a " U. ran k ) C_ V } A. v e. { b e. ( R Cn S ) | ( b " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) } ( u F v ) e. { h e. ( R Cn T ) | ( h " K ) C_ V } ) |
| 218 | 1 | mpofun | |- Fun F |
| 219 | ssrab2 | |- { a e. ( S Cn T ) | ( a " U. ran k ) C_ V } C_ ( S Cn T ) |
|
| 220 | ssrab2 | |- { b e. ( R Cn S ) | ( b " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) } C_ ( R Cn S ) |
|
| 221 | xpss12 | |- ( ( { a e. ( S Cn T ) | ( a " U. ran k ) C_ V } C_ ( S Cn T ) /\ { b e. ( R Cn S ) | ( b " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) } C_ ( R Cn S ) ) -> ( { a e. ( S Cn T ) | ( a " U. ran k ) C_ V } X. { b e. ( R Cn S ) | ( b " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) } ) C_ ( ( S Cn T ) X. ( R Cn S ) ) ) |
|
| 222 | 219 220 221 | mp2an | |- ( { a e. ( S Cn T ) | ( a " U. ran k ) C_ V } X. { b e. ( R Cn S ) | ( b " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) } ) C_ ( ( S Cn T ) X. ( R Cn S ) ) |
| 223 | vex | |- f e. _V |
|
| 224 | vex | |- g e. _V |
|
| 225 | 223 224 | coex | |- ( f o. g ) e. _V |
| 226 | 1 225 | dmmpo | |- dom F = ( ( S Cn T ) X. ( R Cn S ) ) |
| 227 | 222 226 | sseqtrri | |- ( { a e. ( S Cn T ) | ( a " U. ran k ) C_ V } X. { b e. ( R Cn S ) | ( b " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) } ) C_ dom F |
| 228 | funimassov | |- ( ( Fun F /\ ( { a e. ( S Cn T ) | ( a " U. ran k ) C_ V } X. { b e. ( R Cn S ) | ( b " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) } ) C_ dom F ) -> ( ( F " ( { a e. ( S Cn T ) | ( a " U. ran k ) C_ V } X. { b e. ( R Cn S ) | ( b " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) } ) ) C_ { h e. ( R Cn T ) | ( h " K ) C_ V } <-> A. u e. { a e. ( S Cn T ) | ( a " U. ran k ) C_ V } A. v e. { b e. ( R Cn S ) | ( b " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) } ( u F v ) e. { h e. ( R Cn T ) | ( h " K ) C_ V } ) ) |
|
| 229 | 218 227 228 | mp2an | |- ( ( F " ( { a e. ( S Cn T ) | ( a " U. ran k ) C_ V } X. { b e. ( R Cn S ) | ( b " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) } ) ) C_ { h e. ( R Cn T ) | ( h " K ) C_ V } <-> A. u e. { a e. ( S Cn T ) | ( a " U. ran k ) C_ V } A. v e. { b e. ( R Cn S ) | ( b " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) } ( u F v ) e. { h e. ( R Cn T ) | ( h " K ) C_ V } ) |
| 230 | 217 229 | sylibr | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> ( F " ( { a e. ( S Cn T ) | ( a " U. ran k ) C_ V } X. { b e. ( R Cn S ) | ( b " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) } ) ) C_ { h e. ( R Cn T ) | ( h " K ) C_ V } ) |
| 231 | funimass3 | |- ( ( Fun F /\ ( { a e. ( S Cn T ) | ( a " U. ran k ) C_ V } X. { b e. ( R Cn S ) | ( b " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) } ) C_ dom F ) -> ( ( F " ( { a e. ( S Cn T ) | ( a " U. ran k ) C_ V } X. { b e. ( R Cn S ) | ( b " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) } ) ) C_ { h e. ( R Cn T ) | ( h " K ) C_ V } <-> ( { a e. ( S Cn T ) | ( a " U. ran k ) C_ V } X. { b e. ( R Cn S ) | ( b " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) } ) C_ ( `' F " { h e. ( R Cn T ) | ( h " K ) C_ V } ) ) ) |
|
| 232 | 218 227 231 | mp2an | |- ( ( F " ( { a e. ( S Cn T ) | ( a " U. ran k ) C_ V } X. { b e. ( R Cn S ) | ( b " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) } ) ) C_ { h e. ( R Cn T ) | ( h " K ) C_ V } <-> ( { a e. ( S Cn T ) | ( a " U. ran k ) C_ V } X. { b e. ( R Cn S ) | ( b " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) } ) C_ ( `' F " { h e. ( R Cn T ) | ( h " K ) C_ V } ) ) |
| 233 | 230 232 | sylib | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> ( { a e. ( S Cn T ) | ( a " U. ran k ) C_ V } X. { b e. ( R Cn S ) | ( b " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) } ) C_ ( `' F " { h e. ( R Cn T ) | ( h " K ) C_ V } ) ) |
| 234 | eleq2 | |- ( z = ( { a e. ( S Cn T ) | ( a " U. ran k ) C_ V } X. { b e. ( R Cn S ) | ( b " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) } ) -> ( <. A , B >. e. z <-> <. A , B >. e. ( { a e. ( S Cn T ) | ( a " U. ran k ) C_ V } X. { b e. ( R Cn S ) | ( b " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) } ) ) ) |
|
| 235 | sseq1 | |- ( z = ( { a e. ( S Cn T ) | ( a " U. ran k ) C_ V } X. { b e. ( R Cn S ) | ( b " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) } ) -> ( z C_ ( `' F " { h e. ( R Cn T ) | ( h " K ) C_ V } ) <-> ( { a e. ( S Cn T ) | ( a " U. ran k ) C_ V } X. { b e. ( R Cn S ) | ( b " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) } ) C_ ( `' F " { h e. ( R Cn T ) | ( h " K ) C_ V } ) ) ) |
|
| 236 | 234 235 | anbi12d | |- ( z = ( { a e. ( S Cn T ) | ( a " U. ran k ) C_ V } X. { b e. ( R Cn S ) | ( b " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) } ) -> ( ( <. A , B >. e. z /\ z C_ ( `' F " { h e. ( R Cn T ) | ( h " K ) C_ V } ) ) <-> ( <. A , B >. e. ( { a e. ( S Cn T ) | ( a " U. ran k ) C_ V } X. { b e. ( R Cn S ) | ( b " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) } ) /\ ( { a e. ( S Cn T ) | ( a " U. ran k ) C_ V } X. { b e. ( R Cn S ) | ( b " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) } ) C_ ( `' F " { h e. ( R Cn T ) | ( h " K ) C_ V } ) ) ) ) |
| 237 | 236 | rspcev | |- ( ( ( { a e. ( S Cn T ) | ( a " U. ran k ) C_ V } X. { b e. ( R Cn S ) | ( b " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) } ) e. ( ( T ^ko S ) tX ( S ^ko R ) ) /\ ( <. A , B >. e. ( { a e. ( S Cn T ) | ( a " U. ran k ) C_ V } X. { b e. ( R Cn S ) | ( b " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) } ) /\ ( { a e. ( S Cn T ) | ( a " U. ran k ) C_ V } X. { b e. ( R Cn S ) | ( b " K ) C_ U_ y e. w ( ( int ` S ) ` ( k ` y ) ) } ) C_ ( `' F " { h e. ( R Cn T ) | ( h " K ) C_ V } ) ) ) -> E. z e. ( ( T ^ko S ) tX ( S ^ko R ) ) ( <. A , B >. e. z /\ z C_ ( `' F " { h e. ( R Cn T ) | ( h " K ) C_ V } ) ) ) |
| 238 | 136 177 233 237 | syl12anc | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( ( B " K ) = U. w /\ ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) ) -> E. z e. ( ( T ^ko S ) tX ( S ^ko R ) ) ( <. A , B >. e. z /\ z C_ ( `' F " { h e. ( R Cn T ) | ( h " K ) C_ V } ) ) ) |
| 239 | 238 | expr | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( B " K ) = U. w ) -> ( ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) -> E. z e. ( ( T ^ko S ) tX ( S ^ko R ) ) ( <. A , B >. e. z /\ z C_ ( `' F " { h e. ( R Cn T ) | ( h " K ) C_ V } ) ) ) ) |
| 240 | 239 | exlimdv | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ ( B " K ) = U. w ) -> ( E. k ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) -> E. z e. ( ( T ^ko S ) tX ( S ^ko R ) ) ( <. A , B >. e. z /\ z C_ ( `' F " { h e. ( R Cn T ) | ( h " K ) C_ V } ) ) ) ) |
| 241 | 89 240 | syldan | |- ( ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) /\ U. ( S |`t ( B " K ) ) = U. w ) -> ( E. k ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) -> E. z e. ( ( T ^ko S ) tX ( S ^ko R ) ) ( <. A , B >. e. z /\ z C_ ( `' F " { h e. ( R Cn T ) | ( h " K ) C_ V } ) ) ) ) |
| 242 | 241 | expimpd | |- ( ( ph /\ w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ) -> ( ( U. ( S |`t ( B " K ) ) = U. w /\ E. k ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) -> E. z e. ( ( T ^ko S ) tX ( S ^ko R ) ) ( <. A , B >. e. z /\ z C_ ( `' F " { h e. ( R Cn T ) | ( h " K ) C_ V } ) ) ) ) |
| 243 | 242 | rexlimdva | |- ( ph -> ( E. w e. ( ~P ( S |`t ( B " K ) ) i^i Fin ) ( U. ( S |`t ( B " K ) ) = U. w /\ E. k ( k : w --> ~P ( `' A " V ) /\ A. y e. w ( y C_ ( ( int ` S ) ` ( k ` y ) ) /\ ( S |`t ( k ` y ) ) e. Comp ) ) ) -> E. z e. ( ( T ^ko S ) tX ( S ^ko R ) ) ( <. A , B >. e. z /\ z C_ ( `' F " { h e. ( R Cn T ) | ( h " K ) C_ V } ) ) ) ) |
| 244 | 86 243 | mpd | |- ( ph -> E. z e. ( ( T ^ko S ) tX ( S ^ko R ) ) ( <. A , B >. e. z /\ z C_ ( `' F " { h e. ( R Cn T ) | ( h " K ) C_ V } ) ) ) |