This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of an indexed union is the indexed union of the images. (Contributed by Mario Carneiro, 18-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | imaiun | ⊢ ( 𝐴 “ ∪ 𝑥 ∈ 𝐵 𝐶 ) = ∪ 𝑥 ∈ 𝐵 ( 𝐴 “ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexcom4 | ⊢ ( ∃ 𝑥 ∈ 𝐵 ∃ 𝑧 ( 𝑧 ∈ 𝐶 ∧ 〈 𝑧 , 𝑦 〉 ∈ 𝐴 ) ↔ ∃ 𝑧 ∃ 𝑥 ∈ 𝐵 ( 𝑧 ∈ 𝐶 ∧ 〈 𝑧 , 𝑦 〉 ∈ 𝐴 ) ) | |
| 2 | vex | ⊢ 𝑦 ∈ V | |
| 3 | 2 | elima3 | ⊢ ( 𝑦 ∈ ( 𝐴 “ 𝐶 ) ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐶 ∧ 〈 𝑧 , 𝑦 〉 ∈ 𝐴 ) ) |
| 4 | 3 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐵 𝑦 ∈ ( 𝐴 “ 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐵 ∃ 𝑧 ( 𝑧 ∈ 𝐶 ∧ 〈 𝑧 , 𝑦 〉 ∈ 𝐴 ) ) |
| 5 | eliun | ⊢ ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃ 𝑥 ∈ 𝐵 𝑧 ∈ 𝐶 ) | |
| 6 | 5 | anbi1i | ⊢ ( ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ 〈 𝑧 , 𝑦 〉 ∈ 𝐴 ) ↔ ( ∃ 𝑥 ∈ 𝐵 𝑧 ∈ 𝐶 ∧ 〈 𝑧 , 𝑦 〉 ∈ 𝐴 ) ) |
| 7 | r19.41v | ⊢ ( ∃ 𝑥 ∈ 𝐵 ( 𝑧 ∈ 𝐶 ∧ 〈 𝑧 , 𝑦 〉 ∈ 𝐴 ) ↔ ( ∃ 𝑥 ∈ 𝐵 𝑧 ∈ 𝐶 ∧ 〈 𝑧 , 𝑦 〉 ∈ 𝐴 ) ) | |
| 8 | 6 7 | bitr4i | ⊢ ( ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ 〈 𝑧 , 𝑦 〉 ∈ 𝐴 ) ↔ ∃ 𝑥 ∈ 𝐵 ( 𝑧 ∈ 𝐶 ∧ 〈 𝑧 , 𝑦 〉 ∈ 𝐴 ) ) |
| 9 | 8 | exbii | ⊢ ( ∃ 𝑧 ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ 〈 𝑧 , 𝑦 〉 ∈ 𝐴 ) ↔ ∃ 𝑧 ∃ 𝑥 ∈ 𝐵 ( 𝑧 ∈ 𝐶 ∧ 〈 𝑧 , 𝑦 〉 ∈ 𝐴 ) ) |
| 10 | 1 4 9 | 3bitr4ri | ⊢ ( ∃ 𝑧 ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ 〈 𝑧 , 𝑦 〉 ∈ 𝐴 ) ↔ ∃ 𝑥 ∈ 𝐵 𝑦 ∈ ( 𝐴 “ 𝐶 ) ) |
| 11 | 2 | elima3 | ⊢ ( 𝑦 ∈ ( 𝐴 “ ∪ 𝑥 ∈ 𝐵 𝐶 ) ↔ ∃ 𝑧 ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ 〈 𝑧 , 𝑦 〉 ∈ 𝐴 ) ) |
| 12 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 ( 𝐴 “ 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐵 𝑦 ∈ ( 𝐴 “ 𝐶 ) ) | |
| 13 | 10 11 12 | 3bitr4i | ⊢ ( 𝑦 ∈ ( 𝐴 “ ∪ 𝑥 ∈ 𝐵 𝐶 ) ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 ( 𝐴 “ 𝐶 ) ) |
| 14 | 13 | eqriv | ⊢ ( 𝐴 “ ∪ 𝑥 ∈ 𝐵 𝐶 ) = ∪ 𝑥 ∈ 𝐵 ( 𝐴 “ 𝐶 ) |