This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Continuity of the composition operation as a function on continuous function spaces. (Contributed by Mario Carneiro, 20-Mar-2015) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xkococn.1 | ⊢ 𝐹 = ( 𝑓 ∈ ( 𝑆 Cn 𝑇 ) , 𝑔 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑓 ∘ 𝑔 ) ) | |
| Assertion | xkococn | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → 𝐹 ∈ ( ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) Cn ( 𝑇 ↑ko 𝑅 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xkococn.1 | ⊢ 𝐹 = ( 𝑓 ∈ ( 𝑆 Cn 𝑇 ) , 𝑔 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑓 ∘ 𝑔 ) ) | |
| 2 | simprr | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑓 ∈ ( 𝑆 Cn 𝑇 ) ∧ 𝑔 ∈ ( 𝑅 Cn 𝑆 ) ) ) → 𝑔 ∈ ( 𝑅 Cn 𝑆 ) ) | |
| 3 | simprl | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑓 ∈ ( 𝑆 Cn 𝑇 ) ∧ 𝑔 ∈ ( 𝑅 Cn 𝑆 ) ) ) → 𝑓 ∈ ( 𝑆 Cn 𝑇 ) ) | |
| 4 | cnco | ⊢ ( ( 𝑔 ∈ ( 𝑅 Cn 𝑆 ) ∧ 𝑓 ∈ ( 𝑆 Cn 𝑇 ) ) → ( 𝑓 ∘ 𝑔 ) ∈ ( 𝑅 Cn 𝑇 ) ) | |
| 5 | 2 3 4 | syl2anc | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑓 ∈ ( 𝑆 Cn 𝑇 ) ∧ 𝑔 ∈ ( 𝑅 Cn 𝑆 ) ) ) → ( 𝑓 ∘ 𝑔 ) ∈ ( 𝑅 Cn 𝑇 ) ) |
| 6 | 5 | ralrimivva | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → ∀ 𝑓 ∈ ( 𝑆 Cn 𝑇 ) ∀ 𝑔 ∈ ( 𝑅 Cn 𝑆 ) ( 𝑓 ∘ 𝑔 ) ∈ ( 𝑅 Cn 𝑇 ) ) |
| 7 | 1 | fmpo | ⊢ ( ∀ 𝑓 ∈ ( 𝑆 Cn 𝑇 ) ∀ 𝑔 ∈ ( 𝑅 Cn 𝑆 ) ( 𝑓 ∘ 𝑔 ) ∈ ( 𝑅 Cn 𝑇 ) ↔ 𝐹 : ( ( 𝑆 Cn 𝑇 ) × ( 𝑅 Cn 𝑆 ) ) ⟶ ( 𝑅 Cn 𝑇 ) ) |
| 8 | 6 7 | sylib | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → 𝐹 : ( ( 𝑆 Cn 𝑇 ) × ( 𝑅 Cn 𝑆 ) ) ⟶ ( 𝑅 Cn 𝑇 ) ) |
| 9 | eqid | ⊢ ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) = ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) | |
| 10 | 9 | rnmpo | ⊢ ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) = { 𝑥 ∣ ∃ 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } ∃ 𝑣 ∈ 𝑇 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } } |
| 11 | 10 | eleq2i | ⊢ ( 𝑥 ∈ ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ↔ 𝑥 ∈ { 𝑥 ∣ ∃ 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } ∃ 𝑣 ∈ 𝑇 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } } ) |
| 12 | abid | ⊢ ( 𝑥 ∈ { 𝑥 ∣ ∃ 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } ∃ 𝑣 ∈ 𝑇 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } } ↔ ∃ 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } ∃ 𝑣 ∈ 𝑇 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) | |
| 13 | oveq2 | ⊢ ( 𝑦 = 𝑘 → ( 𝑅 ↾t 𝑦 ) = ( 𝑅 ↾t 𝑘 ) ) | |
| 14 | 13 | eleq1d | ⊢ ( 𝑦 = 𝑘 → ( ( 𝑅 ↾t 𝑦 ) ∈ Comp ↔ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) |
| 15 | 14 | rexrab | ⊢ ( ∃ 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } ∃ 𝑣 ∈ 𝑇 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ↔ ∃ 𝑘 ∈ 𝒫 ∪ 𝑅 ( ( 𝑅 ↾t 𝑘 ) ∈ Comp ∧ ∃ 𝑣 ∈ 𝑇 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) |
| 16 | 11 12 15 | 3bitri | ⊢ ( 𝑥 ∈ ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ↔ ∃ 𝑘 ∈ 𝒫 ∪ 𝑅 ( ( 𝑅 ↾t 𝑘 ) ∈ Comp ∧ ∃ 𝑣 ∈ 𝑇 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) |
| 17 | 8 | ad2antrr | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) → 𝐹 : ( ( 𝑆 Cn 𝑇 ) × ( 𝑅 Cn 𝑆 ) ) ⟶ ( 𝑅 Cn 𝑇 ) ) |
| 18 | ffn | ⊢ ( 𝐹 : ( ( 𝑆 Cn 𝑇 ) × ( 𝑅 Cn 𝑆 ) ) ⟶ ( 𝑅 Cn 𝑇 ) → 𝐹 Fn ( ( 𝑆 Cn 𝑇 ) × ( 𝑅 Cn 𝑆 ) ) ) | |
| 19 | elpreima | ⊢ ( 𝐹 Fn ( ( 𝑆 Cn 𝑇 ) × ( 𝑅 Cn 𝑆 ) ) → ( 𝑦 ∈ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ↔ ( 𝑦 ∈ ( ( 𝑆 Cn 𝑇 ) × ( 𝑅 Cn 𝑆 ) ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) | |
| 20 | 17 18 19 | 3syl | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) → ( 𝑦 ∈ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ↔ ( 𝑦 ∈ ( ( 𝑆 Cn 𝑇 ) × ( 𝑅 Cn 𝑆 ) ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) |
| 21 | coeq1 | ⊢ ( 𝑓 = 𝑎 → ( 𝑓 ∘ 𝑔 ) = ( 𝑎 ∘ 𝑔 ) ) | |
| 22 | coeq2 | ⊢ ( 𝑔 = 𝑏 → ( 𝑎 ∘ 𝑔 ) = ( 𝑎 ∘ 𝑏 ) ) | |
| 23 | vex | ⊢ 𝑎 ∈ V | |
| 24 | vex | ⊢ 𝑏 ∈ V | |
| 25 | 23 24 | coex | ⊢ ( 𝑎 ∘ 𝑏 ) ∈ V |
| 26 | 21 22 1 25 | ovmpo | ⊢ ( ( 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∧ 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ) → ( 𝑎 𝐹 𝑏 ) = ( 𝑎 ∘ 𝑏 ) ) |
| 27 | 26 | adantl | ⊢ ( ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∧ 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ) ) → ( 𝑎 𝐹 𝑏 ) = ( 𝑎 ∘ 𝑏 ) ) |
| 28 | 27 | eleq1d | ⊢ ( ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∧ 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ) ) → ( ( 𝑎 𝐹 𝑏 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ↔ ( 𝑎 ∘ 𝑏 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) |
| 29 | imaeq1 | ⊢ ( ℎ = ( 𝑎 ∘ 𝑏 ) → ( ℎ “ 𝑘 ) = ( ( 𝑎 ∘ 𝑏 ) “ 𝑘 ) ) | |
| 30 | 29 | sseq1d | ⊢ ( ℎ = ( 𝑎 ∘ 𝑏 ) → ( ( ℎ “ 𝑘 ) ⊆ 𝑣 ↔ ( ( 𝑎 ∘ 𝑏 ) “ 𝑘 ) ⊆ 𝑣 ) ) |
| 31 | 30 | elrab | ⊢ ( ( 𝑎 ∘ 𝑏 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ↔ ( ( 𝑎 ∘ 𝑏 ) ∈ ( 𝑅 Cn 𝑇 ) ∧ ( ( 𝑎 ∘ 𝑏 ) “ 𝑘 ) ⊆ 𝑣 ) ) |
| 32 | 31 | simprbi | ⊢ ( ( 𝑎 ∘ 𝑏 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } → ( ( 𝑎 ∘ 𝑏 ) “ 𝑘 ) ⊆ 𝑣 ) |
| 33 | simp2 | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → 𝑆 ∈ 𝑛-Locally Comp ) | |
| 34 | 33 | ad3antrrr | ⊢ ( ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( ( 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∧ 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ) ∧ ( ( 𝑎 ∘ 𝑏 ) “ 𝑘 ) ⊆ 𝑣 ) ) → 𝑆 ∈ 𝑛-Locally Comp ) |
| 35 | elpwi | ⊢ ( 𝑘 ∈ 𝒫 ∪ 𝑅 → 𝑘 ⊆ ∪ 𝑅 ) | |
| 36 | 35 | ad2antrl | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) → 𝑘 ⊆ ∪ 𝑅 ) |
| 37 | 36 | ad2antrr | ⊢ ( ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( ( 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∧ 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ) ∧ ( ( 𝑎 ∘ 𝑏 ) “ 𝑘 ) ⊆ 𝑣 ) ) → 𝑘 ⊆ ∪ 𝑅 ) |
| 38 | simprr | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) → ( 𝑅 ↾t 𝑘 ) ∈ Comp ) | |
| 39 | 38 | ad2antrr | ⊢ ( ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( ( 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∧ 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ) ∧ ( ( 𝑎 ∘ 𝑏 ) “ 𝑘 ) ⊆ 𝑣 ) ) → ( 𝑅 ↾t 𝑘 ) ∈ Comp ) |
| 40 | simplr | ⊢ ( ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( ( 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∧ 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ) ∧ ( ( 𝑎 ∘ 𝑏 ) “ 𝑘 ) ⊆ 𝑣 ) ) → 𝑣 ∈ 𝑇 ) | |
| 41 | simprll | ⊢ ( ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( ( 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∧ 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ) ∧ ( ( 𝑎 ∘ 𝑏 ) “ 𝑘 ) ⊆ 𝑣 ) ) → 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ) | |
| 42 | simprlr | ⊢ ( ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( ( 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∧ 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ) ∧ ( ( 𝑎 ∘ 𝑏 ) “ 𝑘 ) ⊆ 𝑣 ) ) → 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ) | |
| 43 | simprr | ⊢ ( ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( ( 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∧ 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ) ∧ ( ( 𝑎 ∘ 𝑏 ) “ 𝑘 ) ⊆ 𝑣 ) ) → ( ( 𝑎 ∘ 𝑏 ) “ 𝑘 ) ⊆ 𝑣 ) | |
| 44 | 1 34 37 39 40 41 42 43 | xkococnlem | ⊢ ( ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( ( 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∧ 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ) ∧ ( ( 𝑎 ∘ 𝑏 ) “ 𝑘 ) ⊆ 𝑣 ) ) → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 〈 𝑎 , 𝑏 〉 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) |
| 45 | 44 | expr | ⊢ ( ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∧ 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ) ) → ( ( ( 𝑎 ∘ 𝑏 ) “ 𝑘 ) ⊆ 𝑣 → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 〈 𝑎 , 𝑏 〉 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
| 46 | 32 45 | syl5 | ⊢ ( ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∧ 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ) ) → ( ( 𝑎 ∘ 𝑏 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 〈 𝑎 , 𝑏 〉 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
| 47 | 28 46 | sylbid | ⊢ ( ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∧ 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ) ) → ( ( 𝑎 𝐹 𝑏 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 〈 𝑎 , 𝑏 〉 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
| 48 | 47 | ralrimivva | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) → ∀ 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∀ 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ( ( 𝑎 𝐹 𝑏 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 〈 𝑎 , 𝑏 〉 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
| 49 | fveq2 | ⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 〈 𝑎 , 𝑏 〉 ) ) | |
| 50 | df-ov | ⊢ ( 𝑎 𝐹 𝑏 ) = ( 𝐹 ‘ 〈 𝑎 , 𝑏 〉 ) | |
| 51 | 49 50 | eqtr4di | ⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( 𝐹 ‘ 𝑦 ) = ( 𝑎 𝐹 𝑏 ) ) |
| 52 | 51 | eleq1d | ⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( 𝐹 ‘ 𝑦 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ↔ ( 𝑎 𝐹 𝑏 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) |
| 53 | eleq1 | ⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( 𝑦 ∈ 𝑧 ↔ 〈 𝑎 , 𝑏 〉 ∈ 𝑧 ) ) | |
| 54 | 53 | anbi1d | ⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ↔ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
| 55 | 54 | rexbidv | ⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ↔ ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 〈 𝑎 , 𝑏 〉 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
| 56 | 52 55 | imbi12d | ⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( ( 𝐹 ‘ 𝑦 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) ↔ ( ( 𝑎 𝐹 𝑏 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 〈 𝑎 , 𝑏 〉 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) ) |
| 57 | 56 | ralxp | ⊢ ( ∀ 𝑦 ∈ ( ( 𝑆 Cn 𝑇 ) × ( 𝑅 Cn 𝑆 ) ) ( ( 𝐹 ‘ 𝑦 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) ↔ ∀ 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∀ 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ( ( 𝑎 𝐹 𝑏 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 〈 𝑎 , 𝑏 〉 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
| 58 | 48 57 | sylibr | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) → ∀ 𝑦 ∈ ( ( 𝑆 Cn 𝑇 ) × ( 𝑅 Cn 𝑆 ) ) ( ( 𝐹 ‘ 𝑦 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
| 59 | 58 | r19.21bi | ⊢ ( ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) ∧ 𝑦 ∈ ( ( 𝑆 Cn 𝑇 ) × ( 𝑅 Cn 𝑆 ) ) ) → ( ( 𝐹 ‘ 𝑦 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
| 60 | 59 | expimpd | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) → ( ( 𝑦 ∈ ( ( 𝑆 Cn 𝑇 ) × ( 𝑅 Cn 𝑆 ) ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
| 61 | 20 60 | sylbid | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) → ( 𝑦 ∈ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
| 62 | 61 | ralrimiv | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) → ∀ 𝑦 ∈ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) |
| 63 | nllytop | ⊢ ( 𝑆 ∈ 𝑛-Locally Comp → 𝑆 ∈ Top ) | |
| 64 | 63 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → 𝑆 ∈ Top ) |
| 65 | simp3 | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → 𝑇 ∈ Top ) | |
| 66 | xkotop | ⊢ ( ( 𝑆 ∈ Top ∧ 𝑇 ∈ Top ) → ( 𝑇 ↑ko 𝑆 ) ∈ Top ) | |
| 67 | 64 65 66 | syl2anc | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → ( 𝑇 ↑ko 𝑆 ) ∈ Top ) |
| 68 | simp1 | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → 𝑅 ∈ Top ) | |
| 69 | xkotop | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑆 ↑ko 𝑅 ) ∈ Top ) | |
| 70 | 68 64 69 | syl2anc | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → ( 𝑆 ↑ko 𝑅 ) ∈ Top ) |
| 71 | txtop | ⊢ ( ( ( 𝑇 ↑ko 𝑆 ) ∈ Top ∧ ( 𝑆 ↑ko 𝑅 ) ∈ Top ) → ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ∈ Top ) | |
| 72 | 67 70 71 | syl2anc | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ∈ Top ) |
| 73 | 72 | ad2antrr | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) → ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ∈ Top ) |
| 74 | eltop2 | ⊢ ( ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ∈ Top → ( ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ↔ ∀ 𝑦 ∈ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) | |
| 75 | 73 74 | syl | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) → ( ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ↔ ∀ 𝑦 ∈ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
| 76 | 62 75 | mpbird | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) → ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ) |
| 77 | imaeq2 | ⊢ ( 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } → ( ◡ 𝐹 “ 𝑥 ) = ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) | |
| 78 | 77 | eleq1d | ⊢ ( 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } → ( ( ◡ 𝐹 “ 𝑥 ) ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ↔ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ) ) |
| 79 | 76 78 | syl5ibrcom | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) → ( 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } → ( ◡ 𝐹 “ 𝑥 ) ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ) ) |
| 80 | 79 | rexlimdva | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) → ( ∃ 𝑣 ∈ 𝑇 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } → ( ◡ 𝐹 “ 𝑥 ) ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ) ) |
| 81 | 80 | anassrs | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ 𝑘 ∈ 𝒫 ∪ 𝑅 ) ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) → ( ∃ 𝑣 ∈ 𝑇 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } → ( ◡ 𝐹 “ 𝑥 ) ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ) ) |
| 82 | 81 | expimpd | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ 𝑘 ∈ 𝒫 ∪ 𝑅 ) → ( ( ( 𝑅 ↾t 𝑘 ) ∈ Comp ∧ ∃ 𝑣 ∈ 𝑇 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) → ( ◡ 𝐹 “ 𝑥 ) ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ) ) |
| 83 | 82 | rexlimdva | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → ( ∃ 𝑘 ∈ 𝒫 ∪ 𝑅 ( ( 𝑅 ↾t 𝑘 ) ∈ Comp ∧ ∃ 𝑣 ∈ 𝑇 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) → ( ◡ 𝐹 “ 𝑥 ) ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ) ) |
| 84 | 16 83 | biimtrid | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → ( 𝑥 ∈ ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) → ( ◡ 𝐹 “ 𝑥 ) ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ) ) |
| 85 | 84 | ralrimiv | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → ∀ 𝑥 ∈ ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ( ◡ 𝐹 “ 𝑥 ) ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ) |
| 86 | eqid | ⊢ ( 𝑇 ↑ko 𝑆 ) = ( 𝑇 ↑ko 𝑆 ) | |
| 87 | 86 | xkotopon | ⊢ ( ( 𝑆 ∈ Top ∧ 𝑇 ∈ Top ) → ( 𝑇 ↑ko 𝑆 ) ∈ ( TopOn ‘ ( 𝑆 Cn 𝑇 ) ) ) |
| 88 | 64 65 87 | syl2anc | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → ( 𝑇 ↑ko 𝑆 ) ∈ ( TopOn ‘ ( 𝑆 Cn 𝑇 ) ) ) |
| 89 | eqid | ⊢ ( 𝑆 ↑ko 𝑅 ) = ( 𝑆 ↑ko 𝑅 ) | |
| 90 | 89 | xkotopon | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑆 ↑ko 𝑅 ) ∈ ( TopOn ‘ ( 𝑅 Cn 𝑆 ) ) ) |
| 91 | 68 64 90 | syl2anc | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → ( 𝑆 ↑ko 𝑅 ) ∈ ( TopOn ‘ ( 𝑅 Cn 𝑆 ) ) ) |
| 92 | txtopon | ⊢ ( ( ( 𝑇 ↑ko 𝑆 ) ∈ ( TopOn ‘ ( 𝑆 Cn 𝑇 ) ) ∧ ( 𝑆 ↑ko 𝑅 ) ∈ ( TopOn ‘ ( 𝑅 Cn 𝑆 ) ) ) → ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ∈ ( TopOn ‘ ( ( 𝑆 Cn 𝑇 ) × ( 𝑅 Cn 𝑆 ) ) ) ) | |
| 93 | 88 91 92 | syl2anc | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ∈ ( TopOn ‘ ( ( 𝑆 Cn 𝑇 ) × ( 𝑅 Cn 𝑆 ) ) ) ) |
| 94 | ovex | ⊢ ( 𝑅 Cn 𝑇 ) ∈ V | |
| 95 | 94 | pwex | ⊢ 𝒫 ( 𝑅 Cn 𝑇 ) ∈ V |
| 96 | eqid | ⊢ ∪ 𝑅 = ∪ 𝑅 | |
| 97 | eqid | ⊢ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } = { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } | |
| 98 | 96 97 9 | xkotf | ⊢ ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) : ( { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } × 𝑇 ) ⟶ 𝒫 ( 𝑅 Cn 𝑇 ) |
| 99 | frn | ⊢ ( ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) : ( { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } × 𝑇 ) ⟶ 𝒫 ( 𝑅 Cn 𝑇 ) → ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ⊆ 𝒫 ( 𝑅 Cn 𝑇 ) ) | |
| 100 | 98 99 | ax-mp | ⊢ ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ⊆ 𝒫 ( 𝑅 Cn 𝑇 ) |
| 101 | 95 100 | ssexi | ⊢ ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ∈ V |
| 102 | 101 | a1i | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ∈ V ) |
| 103 | 96 97 9 | xkoval | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑇 ∈ Top ) → ( 𝑇 ↑ko 𝑅 ) = ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
| 104 | 103 | 3adant2 | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → ( 𝑇 ↑ko 𝑅 ) = ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
| 105 | eqid | ⊢ ( 𝑇 ↑ko 𝑅 ) = ( 𝑇 ↑ko 𝑅 ) | |
| 106 | 105 | xkotopon | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑇 ∈ Top ) → ( 𝑇 ↑ko 𝑅 ) ∈ ( TopOn ‘ ( 𝑅 Cn 𝑇 ) ) ) |
| 107 | 106 | 3adant2 | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → ( 𝑇 ↑ko 𝑅 ) ∈ ( TopOn ‘ ( 𝑅 Cn 𝑇 ) ) ) |
| 108 | 93 102 104 107 | subbascn | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → ( 𝐹 ∈ ( ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) Cn ( 𝑇 ↑ko 𝑅 ) ) ↔ ( 𝐹 : ( ( 𝑆 Cn 𝑇 ) × ( 𝑅 Cn 𝑆 ) ) ⟶ ( 𝑅 Cn 𝑇 ) ∧ ∀ 𝑥 ∈ ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ( ◡ 𝐹 “ 𝑥 ) ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ) ) ) |
| 109 | 8 85 108 | mpbir2and | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → 𝐹 ∈ ( ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) Cn ( 𝑇 ↑ko 𝑅 ) ) ) |