This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem cleq1lem

Description: Equality implies bijection. (Contributed by RP, 9-May-2020)

Ref Expression
Assertion cleq1lem ( 𝐴 = 𝐵 → ( ( 𝐴𝐶𝜑 ) ↔ ( 𝐵𝐶𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 sseq1 ( 𝐴 = 𝐵 → ( 𝐴𝐶𝐵𝐶 ) )
2 1 anbi1d ( 𝐴 = 𝐵 → ( ( 𝐴𝐶𝜑 ) ↔ ( 𝐵𝐶𝜑 ) ) )