This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of two continuous functions is a continuous function. (Contributed by FL, 8-Dec-2006) (Revised by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnco | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐺 ∈ ( 𝐾 Cn 𝐿 ) ) → ( 𝐺 ∘ 𝐹 ) ∈ ( 𝐽 Cn 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntop1 | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top ) | |
| 2 | cntop2 | ⊢ ( 𝐺 ∈ ( 𝐾 Cn 𝐿 ) → 𝐿 ∈ Top ) | |
| 3 | 1 2 | anim12i | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐺 ∈ ( 𝐾 Cn 𝐿 ) ) → ( 𝐽 ∈ Top ∧ 𝐿 ∈ Top ) ) |
| 4 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 5 | eqid | ⊢ ∪ 𝐿 = ∪ 𝐿 | |
| 6 | 4 5 | cnf | ⊢ ( 𝐺 ∈ ( 𝐾 Cn 𝐿 ) → 𝐺 : ∪ 𝐾 ⟶ ∪ 𝐿 ) |
| 7 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 8 | 7 4 | cnf | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 9 | fco | ⊢ ( ( 𝐺 : ∪ 𝐾 ⟶ ∪ 𝐿 ∧ 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) → ( 𝐺 ∘ 𝐹 ) : ∪ 𝐽 ⟶ ∪ 𝐿 ) | |
| 10 | 6 8 9 | syl2anr | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐺 ∈ ( 𝐾 Cn 𝐿 ) ) → ( 𝐺 ∘ 𝐹 ) : ∪ 𝐽 ⟶ ∪ 𝐿 ) |
| 11 | cnvco | ⊢ ◡ ( 𝐺 ∘ 𝐹 ) = ( ◡ 𝐹 ∘ ◡ 𝐺 ) | |
| 12 | 11 | imaeq1i | ⊢ ( ◡ ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) = ( ( ◡ 𝐹 ∘ ◡ 𝐺 ) “ 𝑥 ) |
| 13 | imaco | ⊢ ( ( ◡ 𝐹 ∘ ◡ 𝐺 ) “ 𝑥 ) = ( ◡ 𝐹 “ ( ◡ 𝐺 “ 𝑥 ) ) | |
| 14 | 12 13 | eqtri | ⊢ ( ◡ ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) = ( ◡ 𝐹 “ ( ◡ 𝐺 “ 𝑥 ) ) |
| 15 | simpll | ⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐺 ∈ ( 𝐾 Cn 𝐿 ) ) ∧ 𝑥 ∈ 𝐿 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 16 | cnima | ⊢ ( ( 𝐺 ∈ ( 𝐾 Cn 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) → ( ◡ 𝐺 “ 𝑥 ) ∈ 𝐾 ) | |
| 17 | 16 | adantll | ⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐺 ∈ ( 𝐾 Cn 𝐿 ) ) ∧ 𝑥 ∈ 𝐿 ) → ( ◡ 𝐺 “ 𝑥 ) ∈ 𝐾 ) |
| 18 | cnima | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( ◡ 𝐺 “ 𝑥 ) ∈ 𝐾 ) → ( ◡ 𝐹 “ ( ◡ 𝐺 “ 𝑥 ) ) ∈ 𝐽 ) | |
| 19 | 15 17 18 | syl2anc | ⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐺 ∈ ( 𝐾 Cn 𝐿 ) ) ∧ 𝑥 ∈ 𝐿 ) → ( ◡ 𝐹 “ ( ◡ 𝐺 “ 𝑥 ) ) ∈ 𝐽 ) |
| 20 | 14 19 | eqeltrid | ⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐺 ∈ ( 𝐾 Cn 𝐿 ) ) ∧ 𝑥 ∈ 𝐿 ) → ( ◡ ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) ∈ 𝐽 ) |
| 21 | 20 | ralrimiva | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐺 ∈ ( 𝐾 Cn 𝐿 ) ) → ∀ 𝑥 ∈ 𝐿 ( ◡ ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) ∈ 𝐽 ) |
| 22 | 10 21 | jca | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐺 ∈ ( 𝐾 Cn 𝐿 ) ) → ( ( 𝐺 ∘ 𝐹 ) : ∪ 𝐽 ⟶ ∪ 𝐿 ∧ ∀ 𝑥 ∈ 𝐿 ( ◡ ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) ∈ 𝐽 ) ) |
| 23 | 7 5 | iscn2 | ⊢ ( ( 𝐺 ∘ 𝐹 ) ∈ ( 𝐽 Cn 𝐿 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐿 ∈ Top ) ∧ ( ( 𝐺 ∘ 𝐹 ) : ∪ 𝐽 ⟶ ∪ 𝐿 ∧ ∀ 𝑥 ∈ 𝐿 ( ◡ ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 24 | 3 22 23 | sylanbrc | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐺 ∈ ( 𝐾 Cn 𝐿 ) ) → ( 𝐺 ∘ 𝐹 ) ∈ ( 𝐽 Cn 𝐿 ) ) |