This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Mario Carneiro, 23-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funimassov | ⊢ ( ( Fun 𝐹 ∧ ( 𝐴 × 𝐵 ) ⊆ dom 𝐹 ) → ( ( 𝐹 “ ( 𝐴 × 𝐵 ) ) ⊆ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐹 𝑦 ) ∈ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funimass4 | ⊢ ( ( Fun 𝐹 ∧ ( 𝐴 × 𝐵 ) ⊆ dom 𝐹 ) → ( ( 𝐹 “ ( 𝐴 × 𝐵 ) ) ⊆ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝐴 × 𝐵 ) ( 𝐹 ‘ 𝑧 ) ∈ 𝐶 ) ) | |
| 2 | fveq2 | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) ) | |
| 3 | df-ov | ⊢ ( 𝑥 𝐹 𝑦 ) = ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) | |
| 4 | 2 3 | eqtr4di | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐹 ‘ 𝑧 ) = ( 𝑥 𝐹 𝑦 ) ) |
| 5 | 4 | eleq1d | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝐶 ↔ ( 𝑥 𝐹 𝑦 ) ∈ 𝐶 ) ) |
| 6 | 5 | ralxp | ⊢ ( ∀ 𝑧 ∈ ( 𝐴 × 𝐵 ) ( 𝐹 ‘ 𝑧 ) ∈ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐹 𝑦 ) ∈ 𝐶 ) |
| 7 | 1 6 | bitrdi | ⊢ ( ( Fun 𝐹 ∧ ( 𝐴 × 𝐵 ) ⊆ dom 𝐹 ) → ( ( 𝐹 “ ( 𝐴 × 𝐵 ) ) ⊆ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐹 𝑦 ) ∈ 𝐶 ) ) |